896 resultados para Pathogenic fungi
Resumo:
"The Board of agriculture published in 1910 a small handbook containing 25 coloured plates. This ... has been for some years out of print, and the Ministry ... has decided to republish. In the present edition the nomenclature and text-matter have been brought up-to-date. Some of the old plates have been omitted ... In their place seven new plates have been inserted."--Foreword.
Resumo:
Fungi of the genus Paracoccidioides are responsible for paracoccidioidomycosis. The occurrence of drug toxicity and relapse in this disease justify the development of new antifungal agents. Compounds extracted from fungal extract have showing antifungal activity. Extracts of 78 fungi isolated from rocks of the Atacama Desert were tested in a microdilution assay against Paracoccidioides brasiliensis Pb18. Approximately 18% (5) of the extracts showed minimum inhibitory concentration (MIC) values ≤ 125.0 μg/mL. Among these, extract from the fungus UFMGCB 8030 demonstrated the best results, with an MIC of 15.6 μg/mL. This isolate was identified as Aspergillus felis (by macro and micromorphologies, and internal transcribed spacer, β-tubulin, and ribosomal polymerase II gene analyses) and was grown in five different culture media and extracted with various solvents to optimise its antifungal activity. Potato dextrose agar culture and dichloromethane extraction resulted in an MIC of 1.9 μg/mL against P. brasiliensis and did not show cytotoxicity at the concentrations tested in normal mammalian cell (Vero). This extract was subjected to bioassay-guided fractionation using analytical C18RP-high-performance liquid chromatography (HPLC) and an antifungal assay using P. brasiliensis. Analysis of the active fractions by HPLC-high resolution mass spectrometry allowed us to identify the antifungal agents present in the A. felis extracts cytochalasins. These results reveal the potential of A. felis as a producer of bioactive compounds with antifungal activity.
Resumo:
The aim of this study was to identify Candida species isolated from women diagnosed with recurrent vulvovaginal candidiasis (RVVC) and their partners; and to evaluate the fluconazole (FLZ) susceptibility of the isolates. In a period of six years, among 172 patients diagnosed with vulvovaginal candidiasis, 13 women that presented RVVC and their partners were selected for this investigation. The isolates were obtained using Chromagar Candida medium, the species identification was performed by phenotypic and molecular methods and FLZ susceptibility was evaluated by E-test. Among 26 strains we identified 14 Candida albicans , six Candida duobushaemulonii, four Candida glabrata , and two Candida tropicalis . Agreement of the isolated species occurred in 100% of the couples. FLZ low susceptibility was observed for all isolates of C. duobushaemulonii (minimal inhibitory concentration values from 8-> 64 μg/mL), two C. glabrata isolates were FLZ-resistant and all C. albicans and C. tropicalis isolates were FLZ-susceptible. This report emphasises the importance of accurate identification of the fungal agents by a reliable molecular technique in RVVC episodes besides the lower antifungal susceptibility profile of this rare pathogen C. duobushaemulonii to FLZ.
Resumo:
Mode of access: Internet.
Resumo:
Vibrio pathogens are causative agents of mid-culture outbreaks, and early mortality syndrome and secondary aetiology of most dreadful viral outbreaks in shrimp aquaculture. Among the pathogenic vibrios group, Vibrio alginolyticus and V. harveyi are considered as the most significant ones in the grow-out ponds of giant black tiger shrimp Penaeus monodon in India. Use of antibiotics was banned in many countries due to the emergence of antibiotic-resistant strains and accumulation of residual antibiotics in harvested shrimp. There is an urgent need to consider the use of alternative antibiotics for the control of vibriosis in shrimp aquaculture. Biofilm formation is a pathogenic and/or establishment mechanism of Vibrio spp. This study aims to develop novel safe antibiofilm and/ or antiadhesive process using PHB to contain vibrios outbreaks in shrimp aquaculture.
Resumo:
"Sixth edition, revised and enlarged. Illustrated with 269 coloured figures by J.E. Sowerby."
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Biológicas, Programa de Pós-Graduação em Biologia Animal, 2016.
Resumo:
Nursery grown seedlings are an essential part of the forestry industry. These seedlings are grown under high nutrient conditions caused by fertilization. Though grown in a controlled environment, symbionts such as ectomycorrhizal fungi (EcMF) are often found in these conditions. To examine the effects of EcMF in these conditions, colonized Picea glauca seedlings were collected from Toumey Nursery in Watersmeet, MI. After collection, the EcMF present were morphotyped, and seedlings with different morphotypes were divided equally into two treatment types- fertilized and unfertilized. Seedlings received treatment for one growing season. After that time, seedlings were collected, ectomycorrhizas identified using morphotyping and DNA sequencing, and seedlings were analyzed for differences in leaf nutrient concentration, content, root to shoot ratio, total biomass, and EcMF community structure. DNA sequencing identified 5 unique species groups- Amphinema sp. 1, Amphinema sp. 5, Thelephora terrestris, Sphaerosporella brunnea, and Boletus variipes. In the unfertilized treatment it was found that Amphinema sp. 1 strongly negatively impacted foliar N concentration. In fertilized seedlings, Thelephora terrestris had a strong negative impact on foliar phosphorus concentration, while Amphinema sp. 1 positively impacted foliar boron, magnesium, manganese, and phosphorus concentration. In terms of content, Amphinema sp. 1 led to significantly higher content of manganese and boron in fertilized treatments, as well as elevated phosphorus in unfertilized seedlings. Amphinema sp. 5 had a significant negative effect on phosphorus content. When examining root to shoot ratio and biomass, those seedlings with more non-mycorrhizal tips had a higher root to shoot ratio. Findings from the study shed light on the interactions of the species. Amphinema sp. 5 shows very different functionality than Amphinema sp. 1. Amphinema sp. 1 appears to have the highest positive effect on seedling nutrition when in both fertilized and unfertilized environments. Amphinema sp. 5 and T. terrestris appear to behave parasitically in both fertilized and unfertilized conditions.
Resumo:
This study addressed the effects of salinity and pot size on the interaction between leguminous plant hosts and arbuscular mycorrhizal fungi in four pine rockland soils using a shade house trap-plant experiment. Little is known about the belowground diversity of pine rocklands and the interactions between aboveground and belowground biota – an increased understanding of these interactions could lead to improved land management decisions, conservation and restoration efforts. Following twelve weeks of growth, plants were measured for root and shoot dry biomass and percent colonization by arbuscular mycorrhizal fungi. Overall, arbuscular mycorrhizal fungi had positive fitness effects on the four legume species (Cajanus cajan, Chamaecrista fasciculata, Tephrosia angustissima and Abrus precatorius), improving their growth rate, shoot and root biomass; pot size influenced plant-fungal interactions; and percent colonization by arbuscular mycorrhizal fungi was influenced by soil type as well as salinity.
Resumo:
Polylysogeny is frequently considered to be the result of an adaptive evolutionary process in which prophages confer fitness and/or virulence factors, thus making them important for evolution of both bacterial populations and infectious diseases. The Enterococcus faecalis V583 isolate belongs to the high-risk clonal complex 2 that is particularly well adapted to the hospital environment. Its genome carries 7 prophage-like elements (V583-pp1 to -pp7), one of which is ubiquitous in the species. In this study, we investigated the activity of the V583 prophages and their contribution to E. faecalis biological traits. We systematically analyzed the ability of each prophage to excise from the bacterial chromosome, to replicate and to package its DNA. We also created a set of E. faecalis isogenic strains that lack from one to all six non-ubiquitous prophages by mimicking natural excision. Our work reveals that prophages of E. faecalis V583 excise from the bacterial chromosome in the presence of a fluoroquinolone, and are able to produce active phage progeny. Intricate interactions between V583 prophages were also unveiled: i) pp7, coined EfCIV583 for E. faecalis chromosomal island of V583, hijacks capsids from helper phage 1, leading to the formation of distinct virions, and ii) pp1, pp3 and pp5 inhibit excision of pp4 and pp6. The hijacking exerted by EfCIV583 on helper phage 1 capsids is the first example of molecular piracy in Gram positive bacteria other than staphylococci. Furthermore, prophages encoding platelet-binding-like proteins were found to be involved in adhesion to human platelets, considered as a first step towards the development of infective endocarditis. Our findings reveal not only a role of E. faecalis V583 prophages in pathogenicity, but also provide an explanation for the correlation between antibiotic usage and E. faecalis success as a nosocomial pathogen, as fluoriquinolone may provoke release of prophages and promote gene dissemination among isolates.
Resumo:
The m-AAA protease is a hexameric complex involved in processing of specific substrates and turnover of misfolded polypeptides in the mitochondrial inner membrane. In humans, the m-AAA protease is composed of AFG3L2 and paraplegin. Mutations in AFG3L2 have been implicated in dominant spinocerebellar ataxia (SCA28) and recessive spastic ataxia-neuropathy syndrome (SPAX5). Mutations of SPG7, encoding paraplegin, are linked to hereditary spastic paraplegia. In the mouse, a third subunit AFG3L1 is expressed. Various mouse models recapitulate the phenotype of these neurodegenerative disorders, however, the pathogenic mechanism of neurodegeneration is not completely understood. Here, we studied several mouse models and focused on cell-autonomous role of the m-AAA protease in neurons and myelinating cells. We show that lack of Afg3l2 triggers mitochondrial fragmentation and swelling, tau hyperphosphorylation and pathology in Afg3l2 full-body and forebrain neuron-specific knockout mice. Moreover, deletion of Afg3l2 in adult myelinating cells causes early-onset mitochondrial abnormalities as in the neurons, but the survival of these cells is not affected, which is a contrast to early neuronal death. Despite the fact that myelinating cells have been previously shown to survive respiratory deficiency by glycolysis, total ablation of the m-AAA protease by deleting Afg3l2 in an Afg3l1 null background (DKO), leads to myelinating cell demise and subsequently progressive axonal demyelination. Interestingly, DKO mice show premature hair greying due to loss of melanoblasts. Together, our data demonstrate cell-autonomous survival thresholds to m-AAA protease deficiency, and an essential role of the m-AAA protease to prevent cell death independent from mitochondrial dynamics and the oxidative capacity of the cell. Thus, our findings provide novel insights to the pathogenesis of diseases linked to m-AAA protease deficiency, and also establish valuable mitochondrial dysfunctional mouse models to study other neurodegenerative diseases, such as tauopathies and demyelinating diseases.
New prophylactic and therapeutic treatments to combat pathogenic Enterohaemorrhagic Escherichia coli
Resumo:
Bacterial diarrhoeal diseases have significant influence on global human health, and are a leading cause of preventable death in the developing world. Enterohaemorrhagic Escherichia coli (EHEC), pathogenic strains of E. coli that carry potent toxins, have been associated with a high number of large-scale outbreaks caused by contaminated food and water sources. This pathotype produces diarrhoea and haemorrhagic colitis in infected humans, and in some patients leads to the development of haemolytic uremic syndrome (HUS), which can result in mortality and chronic kidney disease. A major obstacle to the treatment of EHEC infections is the increased risk of HUS development that is associated with antibiotic treatment, and rehydration and renal support are often the only options available. New treatments designed to prevent or clear E. coli infections and reduce symptoms of illness would therefore have large public health and economic impacts. The three main aims of this thesis were: to explore mouse models for pre-clinical evaluation in vivo of small compounds that inhibit a major EHEC colonisation factor, to assess the production and role of two proteins considered promising candidates for a broad-spectrum vaccine against pathogenic E. coli, and to investigate a novel compound that has recently been identified as a potential inhibitor of EHEC toxin production. As EHEC cannot be safely tested in humans due to the risk of HUS development, appropriate small animal models are required for in vivo testing of new drugs. A number of different mouse models have been developed to replicate different features of EHEC pathogenesis, several of which we investigated with a focus on colonisation mediated by the Type III Secretion System (T3SS), a needle-like structure that translocates bacterial proteins into host cells, resulting in a tight, intimate attachment between pathogen and host, aiding colonisation of the gastrointestinal tract. As E. coli models were found not to depend significantly on the T3SS for colonisation, the Citrobacter rodentium model, a natural mouse pathogen closely related to E. coli, was deemed the most suitable mouse model currently available for in vivo testing of T3SS-targeting compounds. Two bacterial proteins, EaeH (an outer membrane adhesin) and YghJ (a putative secreted lipoprotein), highly conserved surface-associated proteins recently identified as III protective antigens against E. coli infection of mice, were explored in order to determine their suitability as candidates for a human vaccine against pathogenic E. coli. We focused on the expression and function of these proteins in the EHEC O157:H7 EDL933 strain and the adherent-invasive E. coli (AIEC) LF82 strain. Although expression of EaeH by other E. coli pathotypes has recently been shown to be upregulated upon contact with host intestinal cells, no evidence of this upregulation could be demonstrated in our strains. Additionally, while YghJ was produced by the AIEC strain, it was not secreted by bacteria under conditions that other YghJ-expressing E. coli pathotypes do, despite the AIEC strain carrying all the genes required to encode the secretion system it is associated with. While our findings indicate that a vaccine that raises antibodies against EaeH and YghJ may have limited effect on the EHEC and AIEC strains we used, recent studies into these proteins in different E. coli pathogens have suggested they are still excellent candidates for a broadly effective vaccine against E. coli. Finally, we characterised a small lead compound, identified by high-throughput screening as a possible inhibitor of Shiga toxin expression. Shiga toxin production causes both the symptoms of illness and development of HUS, and thus reduction of toxin production, release, or binding to host receptors could therefore be an effective way to treat infections and decrease the risk of HUS. Inhibition of Shiga toxin production by this compound was confirmed, and was shown to be caused by an inhibitory effect on activation of the bacterial SOS response rather than on the Shiga toxin genes themselves. The bacterial target of this compound was identified as RecA, a major regulator of the SOS response, and we hypothesise that the compound binds covalently to its target, preventing oligomerisation of RecA into an activated filament. Altogether, the results presented here provide an improved understanding of these different approaches to combating EHEC infection, which will aid the development of safe and effective vaccines and anti-virulence treatments against EHEC.
Resumo:
Filamentous fungi are a threat to the conservation of Cultural Heritage. Thus, detection and identification of viable filamentous fungi are crucial for applying adequate Safeguard measures. RNA-FISH protocols have been previously applied with this aim in Cultural Heritage samples. However, only hyphae detection was reported in the literature, even if spores and conidia are not only a potential risk to Cultural Heritage but can also be harmful for the health of visitors, curators and restorers. Thus, the aim of this work was to evaluate various permeabilizing strategies for their application in the detection of spores/conidia and hyphae of artworks’ biodeteriogenic filamentous fungi by RNA-FISH. Besides of this, the influence of cell aging on the success of the technique and on the development of fungal autofluorescence (that could hamper the RNA-FISH signal detection) were also investigated. Five common biodeteriogenic filamentous fungi species isolated from biodegradated artworks were used as biological model: Aspergillus niger, Cladosporium sp, Fusarium sp, Penicillium sp. and Exophialia sp. Fungal autofluorescence was only detected in cells harvested from Fusarium sp, and Exophialia sp. old cultures, being aging-dependent. However, it was weak enough to allow autofluorescence/RNA-FISH signals distinction. Thus, autofluorescence was not a limitation for the application of RNA-FISH for detection of the taxa investigated. All the permeabilization strategies tested allowed to detect fungal cells from young cultures by RNA-FISH. However, only the combination of paraformaldehyde with Triton X-100 allowed the detection of conidia/spores and hyphae of old filamentous fungi. All the permeabilization strategies failed in the Aspergillus niger conidia/spores staining, which are known to be particularly difficult to permeabilize. But, even in spite of this, the application of this permeabilization method increased the analytical potential of RNA FISH in Cultural Heritage biodeterioration. Whereas much work is required to validate this RNA-FISH approach for its application in real samples from Cultural Heritage it could represent an important advance for the detection, not only of hyphae but also of spores and conidia of various filamentous fungi taxa by RNA-FISH.
Resumo:
Pine wilt disease (PWD) results from the interaction of three elements: the pathogenic nematode, Bursaphelenchus xylophilus; the insect-vector, Monochamus sp.; and the host tree, mostly Pinus species. Bacteria isolated from B. xylophilus may be a fourth element in this complex disease. However, the precise role of bacteria in this interaction is unclear as both plant-beneficial and as plant-pathogenic bacteria may be associated with PWD. Using whole genome sequencing and phenotypic characterization, we were able to investigate in more detail the genetic repertoire of Serratia marcescens PWN146, a bacterium associated with B. xylophilus. We show clear evidence that S. marcescens PWN146 is able to withstand and colonize the plant environment, without having any deleterious effects towards a susceptible host (Pinus thunbergii), B. xylophilus nor to the nematode model C. elegans. This bacterium is able to tolerate growth in presence of xenobiotic/organic compounds, and use phenylacetic acid as carbon source. Furthermore, we present a detailed list of S. marcescens PWN146 potentials to interfere with plant metabolism via hormonal pathways and/or nutritional acquisition, and to be competitive against other bacteria and/or fungi in terms of resource acquisition or production of antimicrobial compounds. Further investigation is required to understand the role of bacteria in PWD. We have now reinforced the theory that B. xylophilus-associated bacteria may have a plant origin.