945 resultados para Oregon. State Board of Health
Resumo:
The finite resolution of joint drives or sensors imparts a discrete nature to the joints of a manipulator. Because of this an arbitrary point in the workspace cannot be reached without error even in ideal mechanical environment. This paper investigates the effect of this discrete nature of the joints on the accuracy of performance of a manipulator and develops a method to select the joint states to reach a point with least error. It is shown that the configuration leading to least error cannot, in general, be found from configuration space, especially when there is large variation in the link lengths or joint resolutions or both. The anomaly becomes severe when the gross motion of the end-effector approaches the local resolution of the workspace. The paper also shows how to distinguish two workspaces which may be identical so far as the boundary points are concerned, taking the joint resolutions into account. Finally, the concepts have been extended to define continuous space global and local performance indices for general multi degree of freedom manipulators.
Resumo:
The spinning sidebands observed in the C-13 MAS NMR spectra of cis,cis-mucononitrile oriented in liquid-crystalline media and of the neat sample in the solid state are studied. There are differences in the sideband intensity patterns in the two cases. These differences arise because the order parameters which characterize the orientation of the solute in the liquid-crystalline media differ for different axes. It is shown that, in general, the relative intensities of the sidebands contain information on the sign and magnitude of an effective chemical-shift parameter which is a function of the sum of the products of the principal components of the chemical-shift tensor and the corresponding order parameters with respect to the director. A method for obtaining the orientation of the carbon chemical-shift tensor is proposed. The carbon chemical-shift tensors obtained from gauge-including atomic orbital calculations are also presented for comparison. (C) 1996 Academic Press, Inc.
Resumo:
Active-clamp dc-dc converters are pulsewidth-modulated converters having two switches featuring zero-voltage switching at frequencies beyond 100 kHz. Generalized equivalent circuits valid for steady-state and dynamic performance have been proposed for the family of active-clamp converters. The active-clamp converter is analyzed for its dynamic behavior under current control in this paper. The steady-state stability analysis is presented. On account of the lossless damping inherent in the active-clamp converters, it appears that the stability region in the current-controlled active-clamp converters get extended for duty ratios, a little greater than 0.5 unlike in conventional hard-switched converters. The conventional graphical approach fails to assess the stability of current-controlled active-clamp converters, due to the coupling between the filter inductor current and resonant inductor current. An analysis that takes into account the presence of the resonant elements is presented to establish the condition for stability. This method correctly predicts the stability of the current-controlled active-clamp converters. A simple expression for the maximum duty cycle for subharmonic-free operation is obtained. The results are verified experimentally.
Resumo:
Aminoacyl-tRNA synthetases (aaRS) catalyze the bimolecular association reaction between amino acid and tRNA by specifically and unerringly choosing the cognate amino acid and tRNA. There are two classes of such synthetases that perform tRNA-aminoacylation reaction. Interestingly, these two classes of aminoacyl-tRNA synthetases differ not only in their structures but they also exhibit remarkably distinct kinetics under pre-steady-state condition. The class I synthetases show initial burst of product formation followed by a slower steady-state rate. This has been argued to represent the influence of slow product release. In contrast, there is no burst in the case of class H enzymes. The tight binding of product with enzyme for class I enzymes is correlated with the enhancement of rate in presence of elongation factor. EF-TU. In spite of extensive experimental studies, there is no detailed theoretical analysis that can provide a quantitative understanding of this important problem. In this article, we present a theoretical investigation of enzyme kinetics for both classes of aminoacyl-tRNA synthetases. We present an augmented kinetic scheme and then employ the methods of time-dependent probability statistics to obtain expressions for the first passage time distribution that gives both the time-dependent and the steady-state rates. The present study quantitatively explains all the above experimental observations. We propose an alternative path way in the case of class II enzymes showing the tRNA-dependent amino acid activation and the discrepancy between the single-turnover and steady-state rate.
Resumo:
Substitution plays an important role in determining the triplet state reactivity. In this paper, we have studied the effect of chlorine substitution on the triplet state structure and the reactivity of thioxanthone (TX). We have employed time-resolved resonance Raman technique to understand the structure of the lowest triplet excited state of 2-chlorothioxanthone (CTX). The experimental findings have been corroborated with the computational results using density functional theory. Akin to the parent compound (TX), coexistence of two lowest triplet states has been observed in case of CTX, which has been substantiated using resonant probe wavelength dependence study. The relative contribution of 3n-pi* to 3 pi-pi* to the equilibrated triplet state has been found to be more for CTX compared to TX suggesting increase in the triplet state reactivity after the substitution. The above observation has been further supported by the flash photolysis experiments. Copyright (C) 2013 John Wiley & Sons, Ltd.
Resumo:
A series of new BODIPYs (4-9) with bulky meso-trimethylsilylphenyl substitution were synthesized. The effect of the substituent's position on the emission properties of the BODIPYs was investigated in detail both in solution and solid state. The new BODIPYs exhibit emission in single crystals and in thin films. The logical increment of steric crowding in the compounds resulted in a periodic change in their conformational flexibility as evident from their F-19 NMR spectra, which in turn led to an increase of fluorescence in solution, thin films and single crystals.
Resumo:
Hit-to-kill interception of high velocity spiraling target requires accurate state estimation of relative kinematic parameters describing spiralling motion. In this pa- per, spiraling target motion is captured by representing target acceleration through sinusoidal function in inertial frame. A nine state unscented Kalman filter (UKF) formulation is presented here with three relative positions, three relative velocities, spiraling frequency of target, inverse of ballistic coefficient and maneuvering coef-ficient. A key advantage of the target model presented here is that it is of generic nature and can capture spiraling as well as pure ballistic motions without any change of tuning parameters. Extensive Six-DOF simulation experiments, which includes a modified PN guidance and dynamic inversion based autopilot, show that near Hit-to-Kill performance can be obtained with noisy RF seeker measurements of gimbal angles, gimbal angle rates, range and range rate.
Resumo:
Diketopyrrolopyrrole (DPP) based molecular semiconductors have emerged as promising materials for high performance active layers in organic solar cells. It is imperative to comprehend the origin of such a property by investigating the fundamental structure property correlation. In this report we have investigated the role of the donor group in DPP based donor-acceptor- donor (D-A-D) structure to govern the solid state, photophysical and electrochemical properties. We have prepared three derivatives of DPP with varying strengths of the donor groups, such as phenyl (PDPP-Hex), thiophene (TDPP-Hex) and selenophene (SeDPP-Hex). The influence of the donor units on the solid state packing was studied by single crystal X-ray diffraction. The photophysical, electrochemical and density functional theory ( DFT) results were combined to elucidate the structural and electronic properties of three DPP derivatives. We found that these DPP derivatives crystallized in the monoclinic space group P21/c and show herringbone packing in the crystal lattice. The derivatives exhibit weak p-p stacking interactions as two neighboring molecules slip away from each other with varied torsional angles at the donor units. The high torsional angle of 32 degrees ( PDPP-Hex) between the phenyl and lactam ring results in weak intramolecular interactions between the donor and acceptor, while TDPP-Hex and SeDPP-Hex show lower torsional angles of 9 degrees and 12 degrees with a strong overlap between the donor and acceptor units. The photophysical properties reveal that PDPP-Hex exhibits a high Stokes shift of 0.32 eV and SeDPP- Hex shows a high molar absorption co-efficient of 33 600 L mol -1 1 cm -1 1 with a low band gap of similar to 2.2 eV. The electrochemical studies of SeDPP- Hex indicate the pronounced effect of selenium in stabilizing the LUMO energy levels and this further emphasizes the importance of chalcogens in developing new n-type organic semiconductors for optoelectronic devices.
Resumo:
Single crystal X-ray structural analysis of a septanoside, namely, n-pentyl-2-chloro-2-deoxy sept-3-uloside (1) provides many finer details of the molecular structure, in addition to its preferred twist-chair conformation, namely, (TC3,4)-T-5,6 conformation. Structural analysis reveals a dense network of O-H...O, C-H...O and van der Waals interactions that stabilize interdigitized, planar bi-layer structure of the crystal lattice. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
The solid state structure of a new seven-membered sugar oxepane derivative, namely, p-bromo phenyl 4,5,7-tri-O-benzyl-beta-D-glycero-D-talo-septanoside is discussed, as determined through single crystal X-ray structural determination and in relation to their conformational features. The molecule adopts twist-chair as the preferred conformation, with conformational descriptor (TC2,3)-T-0,1. The solid state packing of molecules is governed by a rich network of non-covalent bonding originating from O-H center dot center dot center dot O, C-H center dot center dot center dot pi, C-H center dot center dot center dot Br and aromatic pi center dot center dot center dot pi interactions that stabilize the packing of molecules in the crystal. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
This letter presents an accurate steady-state phasor model for a doubly fed induction machine. The drawback of existing steady-state phasor model is discussed. In particular, the inconsistency of existing equivalent model with respect to reactive power flows when operated at supersynchronous speeds is highlighted. Relevant mathematical basis for the proposed model is presented and its validity is illustrated on a 2-MW doubly fed induction machine.