888 resultados para Object recognition test


Relevância:

20.00% 20.00%

Publicador:

Resumo:

IEEE 802.11p is the new standard for inter-vehicular communications (IVC) using the 5.9 GHz frequency band; it is planned to be widely deployed to enable cooperative systems. 802.11p uses and performance have been studied theoretically and in simulations over the past years. Unfortunately, many of these results have not been confirmed by on-tracks experimentation. In this paper, we describe field trials of 802.11p technology with our test vehicles. Metrics such as maximum range, latency and frame loss are examined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monitoring the natural environment is increasingly important as habit degradation and climate change reduce theworld’s biodiversity.We have developed software tools and applications to assist ecologists with the collection and analysis of acoustic data at large spatial and temporal scales.One of our key objectives is automated animal call recognition, and our approach has three novel attributes. First, we work with raw environmental audio, contaminated by noise and artefacts and containing calls that vary greatly in volume depending on the animal’s proximity to the microphone. Second, initial experimentation suggested that no single recognizer could dealwith the enormous variety of calls. Therefore, we developed a toolbox of generic recognizers to extract invariant features for each call type. Third, many species are cryptic and offer little data with which to train a recognizer. Many popular machine learning methods require large volumes of training and validation data and considerable time and expertise to prepare. Consequently we adopt bootstrap techniques that can be initiated with little data and refined subsequently. In this paper, we describe our recognition tools and present results for real ecological problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The chief challenge facing persistent robotic navigation using vision sensors is the recognition of previously visited locations under different lighting and illumination conditions. The majority of successful approaches to outdoor robot navigation use active sensors such as LIDAR, but the associated weight and power draw of these systems makes them unsuitable for widespread deployment on mobile robots. In this paper we investigate methods to combine representations for visible and long-wave infrared (LWIR) thermal images with time information to combat the time-of-day-based limitations of each sensing modality. We calculate appearance-based match likelihoods using the state-of-the-art FAB-MAP [1] algorithm to analyse loop closure detection reliability across different times of day. We present preliminary results on a dataset of 10 successive traverses of a combined urban-parkland environment, recorded in 2-hour intervals from before dawn to after dusk. Improved location recognition throughout an entire day is demonstrated using the combined system compared with methods which use visible or thermal sensing alone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Decision table and decision rules play an important role in rough set based data analysis, which compress databases into granules and describe the associations between granules. Granule mining was also proposed to interpret decision rules in terms of association rules and multi-tier structure. In this paper, we further extend granule mining to describe the relationships between granules not only by traditional support and confidence, but by diversity and condition diversity as well. Diversity measures how diverse of a granule associated with the other ganules, it provides a kind of novel knowledge in databases. Some experiments are conducted to test the proposed new concepts for describing the characteristics of a real network traffic data collection. The results show that the proposed concepts are promising.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Billing Mediation Platform (BMP) in telecommunication industry is used to process real-time streams of Call Detail Records (CDRs) which can be a massive number a day. The generated records by BMP can be deployed for billing purposes, fraud detection, spam filtering, traffic analysis, and churn forecast. Several of these applications are distinguished by real-time processing requiring low-latency analysis of CDRs. Testing of such a platform carries diverse aspects like stress testing of analytics for scalability and what-if scenarios which require generating of CDRs with realistic volumetric and appropriate properties. The approach of this project is to build user friendly and flexible application which assists the development department to test their billing solution occasionally. These generators projects have been around for a while the only difference are the potions they cover and the purpose they will be used for. This paper proposes to use a simulator application to test the BMPs with simulating CDRs. The Simulated CDRs are modifiable based on the user requirements and represent real world data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Audio-visualspeechrecognition, or the combination of visual lip-reading with traditional acoustic speechrecognition, has been previously shown to provide a considerable improvement over acoustic-only approaches in noisy environments, such as that present in an automotive cabin. The research presented in this paper will extend upon the established audio-visualspeechrecognition literature to show that further improvements in speechrecognition accuracy can be obtained when multiple frontal or near-frontal views of a speaker's face are available. A series of visualspeechrecognition experiments using a four-stream visual synchronous hidden Markov model (SHMM) are conducted on the four-camera AVICAR automotiveaudio-visualspeech database. We study the relative contribution between the side and central orientated cameras in improving visualspeechrecognition accuracy. Finally combination of the four visual streams with a single audio stream in a five-stream SHMM demonstrates a relative improvement of over 56% in word recognition accuracy when compared to the acoustic-only approach in the noisiest conditions of the AVICAR database.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Facial expression is an important channel of human social communication. Facial expression recognition (FER) aims to perceive and understand emotional states of humans based on information in the face. Building robust and high performance FER systems that can work in real-world video is still a challenging task, due to the various unpredictable facial variations and complicated exterior environmental conditions, as well as the difficulty of choosing a suitable type of feature descriptor for extracting discriminative facial information. Facial variations caused by factors such as pose, age, gender, race and occlusion, can exert profound influence on the robustness, while a suitable feature descriptor largely determines the performance. Most present attention on FER has been paid to addressing variations in pose and illumination. No approach has been reported on handling face localization errors and relatively few on overcoming facial occlusions, although the significant impact of these two variations on the performance has been proved and highlighted in many previous studies. Many texture and geometric features have been previously proposed for FER. However, few comparison studies have been conducted to explore the performance differences between different features and examine the performance improvement arisen from fusion of texture and geometry, especially on data with spontaneous emotions. The majority of existing approaches are evaluated on databases with posed or induced facial expressions collected in laboratory environments, whereas little attention has been paid on recognizing naturalistic facial expressions on real-world data. This thesis investigates techniques for building robust and high performance FER systems based on a number of established feature sets. It comprises of contributions towards three main objectives: (1) Robustness to face localization errors and facial occlusions. An approach is proposed to handle face localization errors and facial occlusions using Gabor based templates. Template extraction algorithms are designed to collect a pool of local template features and template matching is then performed to covert these templates into distances, which are robust to localization errors and occlusions. (2) Improvement of performance through feature comparison, selection and fusion. A comparative framework is presented to compare the performance between different features and different feature selection algorithms, and examine the performance improvement arising from fusion of texture and geometry. The framework is evaluated for both discrete and dimensional expression recognition on spontaneous data. (3) Evaluation of performance in the context of real-world applications. A system is selected and applied into discriminating posed versus spontaneous expressions and recognizing naturalistic facial expressions. A database is collected from real-world recordings and is used to explore feature differences between standard database images and real-world images, as well as between real-world images and real-world video frames. The performance evaluations are based on the JAFFE, CK, Feedtum, NVIE, Semaine and self-collected QUT databases. The results demonstrate high robustness of the proposed approach to the simulated localization errors and occlusions. Texture and geometry have different contributions to the performance of discrete and dimensional expression recognition, as well as posed versus spontaneous emotion discrimination. These investigations provide useful insights into enhancing robustness and achieving high performance of FER systems, and putting them into real-world applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The serviceability and safety of bridges are crucial to people’s daily lives and to the national economy. Every effort should be taken to make sure that bridges function safely and properly as any damage or fault during the service life can lead to transport paralysis, catastrophic loss of property or even casualties. Nonetheless, aggressive environmental conditions, ever-increasing and changing traffic loads and aging can all contribute to bridge deterioration. With often constrained budget, it is of significance to identify bridges and bridge elements that should be given higher priority for maintenance, rehabilitation or replacement, and to select optimal strategy. Bridge health prediction is an essential underpinning science to bridge maintenance optimization, since the effectiveness of optimal maintenance decision is largely dependent on the forecasting accuracy of bridge health performance. The current approaches for bridge health prediction can be categorised into two groups: condition ratings based and structural reliability based. A comprehensive literature review has revealed the following limitations of the current modelling approaches: (1) it is not evident in literature to date that any integrated approaches exist for modelling both serviceability and safety aspects so that both performance criteria can be evaluated coherently; (2) complex system modelling approaches have not been successfully applied to bridge deterioration modelling though a bridge is a complex system composed of many inter-related bridge elements; (3) multiple bridge deterioration factors, such as deterioration dependencies among different bridge elements, observed information, maintenance actions and environmental effects have not been considered jointly; (4) the existing approaches are lacking in Bayesian updating ability to incorporate a variety of event information; (5) the assumption of series and/or parallel relationship for bridge level reliability is always held in all structural reliability estimation of bridge systems. To address the deficiencies listed above, this research proposes three novel models based on the Dynamic Object Oriented Bayesian Networks (DOOBNs) approach. Model I aims to address bridge deterioration in serviceability using condition ratings as the health index. The bridge deterioration is represented in a hierarchical relationship, in accordance with the physical structure, so that the contribution of each bridge element to bridge deterioration can be tracked. A discrete-time Markov process is employed to model deterioration of bridge elements over time. In Model II, bridge deterioration in terms of safety is addressed. The structural reliability of bridge systems is estimated from bridge elements to the entire bridge. By means of conditional probability tables (CPTs), not only series-parallel relationship but also complex probabilistic relationship in bridge systems can be effectively modelled. The structural reliability of each bridge element is evaluated from its limit state functions, considering the probability distributions of resistance and applied load. Both Models I and II are designed in three steps: modelling consideration, DOOBN development and parameters estimation. Model III integrates Models I and II to address bridge health performance in both serviceability and safety aspects jointly. The modelling of bridge ratings is modified so that every basic modelling unit denotes one physical bridge element. According to the specific materials used, the integration of condition ratings and structural reliability is implemented through critical failure modes. Three case studies have been conducted to validate the proposed models, respectively. Carefully selected data and knowledge from bridge experts, the National Bridge Inventory (NBI) and existing literature were utilised for model validation. In addition, event information was generated using simulation to demonstrate the Bayesian updating ability of the proposed models. The prediction results of condition ratings and structural reliability were presented and interpreted for basic bridge elements and the whole bridge system. The results obtained from Model II were compared with the ones obtained from traditional structural reliability methods. Overall, the prediction results demonstrate the feasibility of the proposed modelling approach for bridge health prediction and underpin the assertion that the three models can be used separately or integrated and are more effective than the current bridge deterioration modelling approaches. The primary contribution of this work is to enhance the knowledge in the field of bridge health prediction, where more comprehensive health performance in both serviceability and safety aspects are addressed jointly. The proposed models, characterised by probabilistic representation of bridge deterioration in hierarchical ways, demonstrated the effectiveness and pledge of DOOBNs approach to bridge health management. Additionally, the proposed models have significant potential for bridge maintenance optimization. Working together with advanced monitoring and inspection techniques, and a comprehensive bridge inventory, the proposed models can be used by bridge practitioners to achieve increased serviceability and safety as well as maintenance cost effectiveness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Maintenance Test Section Survey (MTSS) was conducted as part of a Peer State Review of the Texas Maintenance Program conducted October 5–7, 2010. The purpose of the MTSS was to conduct a field review of 34 highway test sections and obtain participants’ opinions about pavement, roadside, and maintenance conditions. The goal was to cross reference or benchmark TxDOT’s maintenance practices based on practices used by selected peer states. Representatives from six peer states (California, Georgia, Kansas, Missouri, North Carolina, and Washington) were invited to Austin to attend a 3-day Peer State Review of TxDOT Maintenance Practices Workshop and to participate in a field survey of a number of pre-selected one-mile roadway sections. It should be emphasized that the objective of the survey was not to evaluate and grade or score TxDOT’s road network but rather to determine whether the selected roadway sections met acceptable standards of service as perceived by Directors of Maintenance or senior maintenance managers from the peer states...