1000 resultados para OXYGEN NONSTOICHIOMETRY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Galactic bulge planetary nebulae show evidence of mixed chemistry with emission from both silicate dust and PAHs. This mixed chemistry is unlikely to be related to carbon dredge up, as third dredge-up is not expected to occur in the low mass bulge stars. We show that the phenomenon is widespread, and is seen in 30 nebulae out of our sample of 40. A strong correlation is found between strength of the PAH bands and morphology, in particular, the presence of a dense torus. A chemical model is presented which shows that hydrocarbon chains can form within oxygen-rich gas through gas-phase chemical reactions. We conclude that the mixed chemistry phenomenon occurring in the galactic bulge planetary nebulae is best explained through hydrocarbon chemistry in an UV-irradiated, dense torus. © 2012 International Astronomical Union.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AimsThe main aim of this study was to determine the virucidal inactivation efficacy of an in-house-designed atmospheric pressure, nonthermal plasma jet operated at varying helium/oxygen feed gas concentrations against MS2 bacteriophage, widely employed as a convenient surrogate for human norovirus.

Methods and ResultsThe effect of variation of percentage oxygen concentration in the helium (He) carrier gas was studied and found to positively correlate with MS2 inactivation rate, indicating a role for reactive oxygen species (ROS) in viral inactivation. The inactivation rate constant increased with increasing oxygen concentrations up to 075% O-2. 3 log(10) (999%) reductions in MS2 viability were achieved after 3min of exposure to the plasma source operated in a helium/oxygen (9925%:075%) gas mixture, with >7 log(10) reduction after 9min exposure.

ConclusionsAtmospheric pressure, nonthermal plasmas may have utility in the rapid disinfection of virally contaminated surfaces for infection control applications.

Significance and Impact of StudyThe atmospheric pressure, nonthermal plasma jet employed in this study exhibits rapid virucidal activity against a norovirus surrogate virus, the MS2 bacteriophage, which is superior to previously published inactivation rates for chemical disinfectants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We unravel the complex chemistry in both the neutral and ionic systems of a radio-frequency-driven atmospheric-pressure plasma in a helium-oxygen mixture (He-0.5% O) with air impurity levels from 0 to 500 ppm of relative humidity from 0% to 100% using a zero-dimensional, time-dependent global model. Effects of humid air impurity on absolute densities and the dominant production and destruction pathways of biologically relevant reactive neutral species are clarified. A few hundred ppm of air impurity crucially changes the plasma from a simple oxygen-dependent plasma to a complex oxygen-nitrogen-hydrogen plasma. The density of reactive oxygen species decreases from 10 to 10 cm, which in turn results in a decrease in the overall chemical reactivity. Reactive nitrogen species (10 cm ), atomic hydrogen and hydroxyl radicals (10-10 cm) are generated in the plasma. With 500 ppm of humid air impurity, the densities of positively charged ions and negatively charged ions slightly increase and the electron density slightly decreases (to the order of 10 cm). The electronegativity increases up to 2.3 compared with 1.5 without air admixture. Atomic hydrogen, hydroxyl radicals and oxygen ions significantly contribute to the production and destruction of reactive oxygen and reactive nitrogen species. © 2013 IOP Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In most applications helium-based plasma jets operate in an open-air environment. The presence of humid air in the plasma jet will influence the plasma chemistry and can lead to the production of a broader range of reactive species. We explore the influence of humid air on the reactive species in radio frequency (rf)-driven atmospheric-pressure helium-oxygen mixture plasmas (He-O, helium with 5000 ppm admixture of oxygen) for wide air impurity levels of 0-500 ppm with relative humidities of from 0% to 100% using a zero-dimensional, time-dependent global model. Comparisons are made with experimental measurements in an rf-driven micro-scale atmospheric pressure plasma jet and with one-dimensional semi-kinetic simulations of the same plasma jet. These suggest that the plausible air impurity level is not more than hundreds of ppm in such systems. The evolution of species concentration is described for reactive oxygen species, metastable species, radical species and positively and negatively charged ions (and their clusters). Effects of the air impurity containing water humidity on electronegativity and overall plasma reactivity are clarified with particular emphasis on reactive oxygen species. © 2013 IOP Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, neutral and charged particle dynamics in both the capacitive and inductive modes of an inductively coupled oxygen discharge are presented. Langmuir probes, laser-assisted photodetachment and two-photon laser-induced fluorescence are employed to measure plasma parameters in the 13.56MHz system for a range of plasma powers and gas pressures. It is found that the capacitive mode is more electronegative with lower molecular dissociation compared with the inductive mode. However, the negative ion density in each mode is comparable. A maximum is observed in the negative ion density and fraction with pressure for both modes. The experimental measurements are supplemented by a global model, which includes capacitive and inductive coupling effects. The model and experiments demonstrate that negative ion loss is dominated by ion-ion recombination and electron detachment at low pressures (

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The position-dependent oxygen vacancy dynamics induced by a biased scanning probe microscopy tip in Samarium doped ceria thin films grown on MgO (100) substrates is investigated. The granularity of the samples gives rise to spatially dependent local electrochemical activity, as explored by electrochemical strain microscopy. The kinetics of the oxygen vacancy relaxation process is investigated separately for grain boundaries and grains. Higher oxygen vacancy concentration variation and slower diffusion are observed in the grain boundary regions as compared to the grains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oxygen reduction reaction (ORR) activity of Pt/C catalysts was investigated in electrolytes of 0.5 mol/L H2SO4 containing varying concentrations of methanol in a half-cell. It was found that the ORR activity was improved notably in an electrolyte of 0.5 mol/L H2SO4 containing 0.1 mol/L CH3OH as compared with that in 0.5 mol/L H2SO4, 0.5 mol/L H2SO4 containing 0.5 mol/L CH3OH, or 0.5 mol/L H2SO4 containing 1.0 mol/L CH3OH electrolytes. The same tendency for improved ORR activity was also apparent after commercial Nafion (R) NRE-212 membrane was hot-pressed onto the catalyst layers. The linear sweep voltammetry results indicate that the ORR activities of the Pt/C catalyst were almost identical in the 0.5 mol/L H2SO4 + 0.1 mol/L CH3OH solution before and after coated with the Nafion (R) membrane. Electrochemical impedance spectroscopy results demonstrated that the resistance of the Nafion (R) membrane is smaller in the electrolyte of 0.5 mol/L H2SO4 + 0.1 mol/L CH3OH than in other electrolytes with oxygen gas feed. This exceptional property of the Nafion (R) membrane is worth investigating and can be applied in fuel cell stacks to improve the system performance. (c) 2013, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents the results of oxygen solubility in ionic liquids based on 1-alkyl-3-methylimidazolium cations. Solubility measurements have been carried out in gasometric apparatus at 22, 50 and 90 degrees C under atmospheric pressure. We report the Henry's constants. In general the occurrence of carbon-fluorine bonds and carbon-hydrogen bonds in ionic liquids (ILs) which can create hydrogen bonds with dissolved oxygen, significantly affects the growth of value of solubility constant K-H. Additionally, the stability of ILs towards molecular oxygen was tested. All ILs used in this study were stable in the presence of oxygen and free-radical initiator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bimetallic catalyst system of ruthenium oxide (RuO) and niobium oxide (NbO) was prepared using the Adams method and the hydrolysis method. Physical and electrochemical characterizations of the catalysts were studied using X-ray diffraction (XRD), Scanning electron microscopy (SEM), cyclic voltammogram (CV) and polarization measurements. NbO addition to RuO was found to increase the stability of RuO. In Adams method the sodium nitrate was found to be forming complex with NbO at high temperature reaction. This makes Adams method unsuitable for the synthesis of RuO -NbO bimetallic system. Hydrolysis method on other hand does not have this problem. But a proper mixture of two oxides was not obtained in hydrolysis method. A lower crystallite size for bimetallic system was obtained with Adams method compared to hydrolysis method. RuO prepared by Adams method had higher activity compared to the hydrolysis counterpart in electrolyzer operation with nafion membrane. A cell voltage of 1.62 V was obtained with RuO (A) at 1 A/cm. A higher stability for RuNbO(A) compared to RuO(A) was observed in continuous cyclic voltammogram and electrolyzer cell test. Copyright © 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Indium tin oxide (ITO) was used as a support for IrO2 catalyst in the oxygen evolution reaction. IrO2 nanoparticles were deposited in various loading on commercially available ITO nanoparticle, 17–28 nm in size using the Adam's fusion method. The prepared catalysts were characterised using X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The BET surface area of the support (35 m2/g) was 3 times lower than the unsupported IrO2 (112.7 m2/g). The surface area and electronic conductivity of the catalysts were predominantly contributed by the IrO2. The supported catalysts were tested in a membrane electrode assembly (MEA) for electrolyser operation. The 90% IrO2-ITO gave similar performance (1.74 V@1 A/cm2) to that of the unsupported IrO2 (1.73 V@1 A/cm2) in the MEA polarisation test at 80 °C with Nafion 115 membrane which was attributed to a better dispersion of the active IrO2 on the electrochemically inactive ITO support, giving rise to smaller catalyst particle and thereby higher surface area. Large IrO2 particles on the support significantly reduced the electrode performance. A comparison of TiO2 and ITO as support material showed that, 60% IrO2 loading was able to cover the support surface and giving sufficient conductivity to the catalyst.