998 resultados para ORGANIC FLUIDS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quality ZnO films were successfully grown on Si(100) substrate by low-pressure metal organic chemical vapor deposition method in temperature range of 300-500 degrees C using DEZn and N2O as precursor and oxygen source respectively. The crystal structure, optical properties and surface morphology of ZnO films were characterized by X-ray diffraction, optical refection and atomic force microscopy technologies. It was demonstrated that the crystalline structure and surface morphology of ZnO films strongly depend on the growth temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Post-growth annealing was carried out on ZnO thin films grown by metal-organic chemical vapor deposition (MOCVD). The grain size of ZnO thin film increases monotonically with annealing temperature. The ZnO thin films were preferential to c-axis oriented after annealing as confirmed by Xray diffraction (XRD) measurements. Fourier transformation infrared transmission measurements showed that ZnO films grown at low temperature contains CO2 molecules after post-growth annealing. A two-step reaction process has been proposed to explain the formation mechanism of CO2, which indicates the possible chemical reaction processes during the metal-organic chemical vapor deposition of ZnO films.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report highly efficient and stable organic light-emitting diodes (OLEDs) with MoO3-doped perylene-3, 4, 9, 10-tetracarboxylic dianhydride (PTCDA) as hole injection layer (HIL). A green OLED with structure of ITO/20 wt% MoO3: PTCDA/NPB/Alq(3)/LiF/Al shows a long lifetime of 1012 h at the initial luminance of 2000 cd/m(2), which is 1.3 times more stable than that of the device with MoO3 as HIL. The current efficiency of 4.7 cd/A and power efficiency of 3.7 lm/W at about 100 cd/m(2) have been obtained. The charge transfer complex between PTCDA and MoO3 plays a decisive role in improving the performance of OLEDs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SnS/SnO heterojunction structured nanocrystals with zigzag rod-like connected morphology were prepared by using a simple two-step method. Bulk heterojunction solar cells were fabricated using the SnS/SnO nanocrystals blended with poly(2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylene vinylene) (MDMO-PPV) as the active layer. Compared with solar cells using SnS nanoparticles hybridized with MDMO-PPV as the active layer, the SnS/SnO devices showed better performance, with a power conversion efficiency higher by about one order in magnitude.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tandem organic light-emitting diodes (OLEDs) with an effective charge-generation connection structure of Mg-doped tris(8-hydroxyquinoline) aluminum (Alq(3))/Molybdenum oxide (MoO3)-doped 3, 4, 9, 10-perylenetetracarboxylic dianhydride (PTCDA) were presented. At a current density of 50 mA/cm(2), the current efficiency of the tandem OLED with two standard NPB/Alq(3) emitting units is 4.2 cd/A, which is 1.7 times greater than that of the single EL device. The tandem OLED with the similar connection structure of Mg-doped PTCDA/MoO3-doped PTCDA was also fabricated and the influences of the different connection units on the current efficiency of the tandem OLED were discussed as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hydrogen production from the organic fraction of municipal solid waste (OFMSW) by anaerobic mixed culture fermentation was investigated using batch experiments at 37 degrees C. Seven varieties of typical individual components of OFMSW including rice, potato, lettuce, lean meat, oil, fat and banyan leaves were selected to estimate the hydrogen production potential. Experimental results showed that the boiling treated anaerobic sludge was effective mixed inoculum for fermentative hydrogen production from OFMSW. Mechanism of fermentative hydrogen production indicates that, among the OFMSW, carbohydrates is the most optimal substrate for fermentative hydrogen production compared with proteins, lipids and lignocelluloses. This conclusion was also substantiated by experimental results of this study. The hydrogen production potentials of rice, potato and lettuce were 134 mL/g-VS, 106 mL/g-VS, and 50 mL/g-VS respectively. The hydrogen percentages of the total gas produced from rice, potato and lettuce were 57-70%, 41-55% and 37-67%. 2008 International Association for Hydrogen Energy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The excess Helmholtz free energy functional for associating hard sphere fluid is formulated by using a modified fundamental measure theory [Y. X. Yu and J. Z. Wu, J. Chem. Phys. 117, 10156 (2002)]. Within the framework of density functional theory, the thermodynamic properties including phase equilibria for both molecules and monomers, equilibrium plate-fluid interfacial tensions and isotherms of excess adsorption, average molecule density, average monomer density, and plate-fluid interfacial tension for four-site associating hard sphere fluids confined in slit pores are investigated. The phase equilibria inside the hard slit pores and attractive slit pores are determined according to the requirement that temperature, chemical potential, and grand potential in coexistence phases should be equal and the plate-fluid interfacial tensions at equilibrium states are predicted consequently. The influences of association energy, fluid-solid interaction, and pore width on phase equilibria and equilibrium plate-fluid interfacial tensions are discussed.