984 resultados para Numerical-solution
Resumo:
Magdeburg, Univ., Fak. für Mathematik, Diss., 2006
Resumo:
Magdeburg, Univ., Diss., 2007 (Nicht für den Austausch)
Resumo:
Fluidized beds, granulation, heat and mass transfer, calcium dynamics, stochastic process, finite element methods, Rosenbrock methods, multigrid methods, parallelization
Resumo:
Magdeburg, Univ., Fak. für Mathematik, Diss., 2006
Resumo:
Magdeburg, Univ., Fak. für Mathematik, Diss., 2009
Resumo:
Magdeburg, Univ., Fak. für Mathematik, Diss., 2010
Resumo:
Magdeburg, Univ., Fak. für Mathematik, Diss., 2010
Resumo:
Magdeburg, Univ., Fak. für Mathematik, Diss., 2011
Resumo:
The author proves that equation, Σy n ΣZx | ΣxyZx ΣxZx ΣxZ2x | = 0, Σy ΣZx Σy2x | where Z = 10-cq and q is a numerical constant, used by Pimentel Gomes and Malavolta in several articles for the interpolation of Mitscherlih's equation y = A [ 1 - 10 - c (x + b) ] by the least squares method, always has a zero of order three for Z = 1. Therefore, equation A Zm + A1Zm -1 + ........... + Am = 0 obtained from that determinant can be divided by (Z-1)³. This property provides a good test for the correctness of the computations and facilitates the solution of the equation.
Resumo:
Magdeburg, Univ., Fak. für Verfahrens- und Systemtechnik, Diss., 2012
Resumo:
Magdeburg, Univ., Fak. für Verfahrens- und Systemtechnik, Diss., 2012
Resumo:
Magdeburg, Univ., Fak. für Mathematik, Diss., 2013
Resumo:
Magdeburg, Univ., Fak. für Mathematik, Diss., 2013
Resumo:
Otto-von-Guericke-Universität Magdeburg, Fakultät für Mathematik, Univ., Dissertation, 2015
Resumo:
We review several results concerning the long time asymptotics of nonlinear diffusion models based on entropy and mass transport methods. Semidiscretization of these nonlinear diffusion models are proposed and their numerical properties analysed. We demonstrate the long time asymptotic results by numerical simulation and we discuss several open problems based on these numerical results. We show that for general nonlinear diffusion equations the long-time asymptotics can be characterized in terms of fixed points of certain maps which are contractions for the euclidean Wasserstein distance. In fact, we propose a new scaling for which we can prove that this family of fixed points converges to the Barenblatt solution for perturbations of homogeneous nonlinearities for values close to zero.