958 resultados para NONLINEAR SCIENCE
Resumo:
In this response to Tom G. K. Bryce and Stephen P. Day’s (Cult Stud Sci Educ. doi:10.1007/s11422-013-9500-0, 2013) original article, I share with them their interest in the teaching of climate change in school science, but I widen it to include other contemporary complex socio-scientific issues that also need to be discussed. I use an alternative view of the relationship between science, technology and society, supported by evidence from both science and society, to suggest science-informed citizens as a more realistic outcome image of school science than the authors’ one of mini-scientists. The intellectual independence of students Bryce and Day assume, and intend for school science, is countered with an active intellectual dependence. It is only in relation to emerging and uncertain scientific contexts that students should be taught about scepticism, but they also need to learn when, and why to trust science as an antidote to the expressions of doubting it. Some suggestions for pedagogies that could lead to these new learnings are made. The very recent fifth report of the IPCC answers many of their concerns about climate change.
Resumo:
Background The development of intelligent, thinking performers as a central theme in Physical Education curriculum documents worldwide has highlighted the need for an evolution of teaching styles from the dominant reproductive approach. This has prompted an Australian university to change the content and delivery of a games unit within their Physical Education Teacher Education (PETE) course and adopt a productive student centred approach that is compatible with current curriculum directives. The significance of prospective physical educators’ biographies on their receptiveness to this pedagogical innovation was studied to help recognise and understand potential differences and subsequently guide programme development to help improve the impact of teacher education. Purpose To investigate whether past school and sporting experiences are powerful influences on Australian PETE recruits’ initial perspectives about effective physical education teaching practice and their receptiveness to an alternative pedagogical approach. Participants and Setting 49 first year pre-service PETE students (53% male; 47% female; mean age 18.88 ± 1.57 years) undertaking a compulsory unit on games teaching at an Australian university volunteered to take part in the study and were grouped according to their highest level of representation in games, either school/club (n=13), regional (n=20), or state/national (n=16). Students experienced the constraints-led approach as learners and teachers during an 8-week games unit informed by nonlinear pedagogy and underpinned by motor learning theory. Data collection and Analysis Prior to the commencement of the unit participants completed part A of a two part mixed response questionnaire aimed at gathering data about their physical education and sporting background. The data were summarised using descriptive statistics. Pre and post intervention, participants completed part B responding, via Likert Scale with their opinion of the importance of each sub-component of the traditional reproductive style for an effective games teaching session. This resulted in a traditional reproductive games teaching belief score. For each sub-component, participants were invited to respond in more detail to justify their opinions. A one-way between groups analysis of variance (ANOVA), Tukey’s HSD Post Hoc Test and a two - tailed, paired samples t test were used to analyse the quantitative data. Content analysis was used to analyse the qualitative data. Findings The traditional, reproductive approach was the most frequently reported teaching approach used by the physical education teachers and sports coaches of participants in all groups. Prior to the commencement of the alternate games unit, participants in each representative level group held very strong custodial traditional reproductive games teaching beliefs. After experiencing the alternative games unit there were statistically significant differences in the traditional reproductive games teaching belief mean scores for each group, This combined with participants’ qualitative responses indicated a receptiveness to the alternative pedagogy. Conclusions The results of this present study show that, contrary to previous research undertaken in North America, in Australia, it is possible for PETE educators to change beliefs in order to overcome the constraint of acculturation and provide PETE students with the knowledge, understanding and belief in an alternate approach to teaching games in physical education compatible with curriculum documents.
Resumo:
The numerical solution in one space dimension of advection--reaction--diffusion systems with nonlinear source terms may invoke a high computational cost when the presently available methods are used. Numerous examples of finite volume schemes with high order spatial discretisations together with various techniques for the approximation of the advection term can be found in the literature. Almost all such techniques result in a nonlinear system of equations as a consequence of the finite volume discretisation especially when there are nonlinear source terms in the associated partial differential equation models. This work introduces a new technique that avoids having such nonlinear systems of equations generated by the spatial discretisation process when nonlinear source terms in the model equations can be expanded in positive powers of the dependent function of interest. The basis of this method is a new linearisation technique for the temporal integration of the nonlinear source terms as a supplementation of a more typical finite volume method. The resulting linear system of equations is shown to be both accurate and significantly faster than methods that necessitate the use of solvers for nonlinear system of equations.
Resumo:
This paper reports findings from the Choosing Science study (Lyons & Quinn, 2010) indicating that Australian Year 10 students in small rural or remote areas tend to regard their science lessons as less relevant than do students in larger towns and cities. Specifically, those in small rural or remote schools were significantly more inclined than their city peers to disagree that what they learned in science classes 'helped them make sense of the world'. They were also significantly more likely to strongly agree that they found science lessons boring, and to strongly disagree that science was one of the most interesting subjects. Potential explanations discussed include a mismatch between science curriculum content and the everyday experiences of students in these regions, the relative shortage of experienced specialist science teachers in rural or remote areas and a lack of opportunities to demonstrate the relevance of school science, among others. The paper considers the implications of these findings in relation to the Australian Science Curriculum and whether it is likely to better address the needs of rural and remote students.
Resumo:
This paper reports findings from an Australian survey of Year 10 students (N=3759) indicating that those in small rural and remote areas tend to enjoy school science significantly less than their peers in larger towns and cities (Lyons & Quinn, 2010). The study also found that rural and remote students were less inclined than those in other locations to enjoy science relative to other subjects. Such a result has not previously been recorded in the science education literature and raises a number of questions about the relevance and quality of the science education experienced by rural and remote students. It also raises timely questions about the applicability to rural and remote students of an Australian Science Curriculum. The paper explores these issues and their implications for policy and research.
Resumo:
Young people’s participation in science, technology, engineering and mathematics (STEM) is a matter of international concern. Studies and careers that require physical sciences and advanced mathematics are most affected by the problem and women in particular are under-represented in many STEM fields. This article views international research about young people’s relationships to, and participation in, STEM subjects and careers through the lens of an expectancy value model of achievement-related choices. In addition it draws on sociological theories of late-modernity and identity, which situate decision-making in a cultural context. The article examines how these frameworks are useful in explaining the decisions of young people – and young women in particular – about participating in STEM and proposes possible strategies for removing barriers to participation.
Resumo:
Disproportionate representation of males and females in science courses and careers continues to be of concern. This article explores gender differences in Australian high school students’ perceptions of school science and their intentions to study university science courses. Nearly 3800 15-year-old students responded to a range of 5-point Likert items relating to intentions to study science at university, perceptions of career-related instrumental issues such as remuneration and job security, self-rated science ability and enjoyment of school science. Australian boys and girls reported enjoying science to a similar extent, however boys reported enjoying it more in relation to other subjects than did girls, and rated their ability in science compared to others in their class more highly than did girls. There was no significant difference between the mean responses of girls and boys to the item “It is likely I will choose a science-related university course when I leave school” and the strongest predictors of responses to this item were items relating to students’ liking for school science and awareness from school science of new and exciting jobs, followed by their perceived self-ability. These results are discussed in relation to socio-scientific values that interact with identity and career choices, employment prospects in science, and implications for science education.
Resumo:
Research on the achievement and retention of female students in science and mathematics is located within a context of falling levels of participation in physical science and mathematics courses in Australian schools, and underrepresentation of females in some science, technology, engineering and mathematics (STEM) courses. The Interests and Recruitment in Science (IRIS) project is an international project that aims to contribute to understanding and improving recruitment, retention and gender equity in STEM higher education. Nearly 3500 first year students in 30 Australian universities responded to the IRIS survey of 5-point Likert items and open responses. This paper explores gender differences in first year university students’ responses to three questions about important influences on their course choice. The IRIS study found good teachers were rated highly by both males and females as influential in choosing STEM courses, and significantly higher numbers of females rated personal encouragement from senior high school science teacher as very important. In suggestions for addressing sex disparities in male-dominated STEM courses, more females indicated the importance of good teaching/encouragement and more females said (unspecified) encouragement. This study relates to the influence of school science teachers and results are discussed in relation to implications for science education.
Resumo:
This paper reports results from a study comparing teachers’ and students’ perceptions about the relative degree of influence parents, teachers, friends, older students and careers advisors have on students’ decisions about enrolling in non-compulsory high school science subjects. The comparison was carried out as part of the Choosing Science project - a large-scale Australian study of 15 year-old students’ experiences of school science and intentions regarding further participation. The study found that students considered their science teachers to have had the greatest influence, followed by parents and then friends. In contrast, however, science teachers believed their students to be most influenced in their decisions by friends and peers, followed by older students and siblings and parents, with teachers themselves having relatively little influence. Both groups believed that advice from careers advisors was of little influence. The findings are unique in the science education literature in providing an insight into differences and similarities in the perceptions of students and their teachers. In particular they indicate that teachers play a far greater role in students’ decisions about enrolling in science than they believe. This has important implications for science teachers and teacher educators in terms of appreciating their influence and applying it in ways that encourage participation in science courses.
Islamic contributions to the International Organization for Science and Technology Education (IOSTE)
Resumo:
This presentation introduces the International Organization for Science and Technology Education (IOSTE), outlining its history, structure, principles and activities. It discusses the role of IOSTE as a values-oriented STE research organization established in response to cold war ideologies with the aim of encouraging dialogue and academic exchange. The presentation then highlights the recent engagement of IOSTE with STE in predominantly Muslim countries. It examines quantitatively and qualitatively the increasing contributions from researchers in these countries, and outlines possible future engagements which could lead to closer research collaborations and relationships between STE academics in Muslim and non-Muslim countries.
Resumo:
This paper reports and discusses a contentious result from an Australia-wide study of the influences on students' decisions about taking senior science subjects. As part of the Choosing Science study (Lyons and Quinn 2010) 3759 Year 10 students were asked to indicate which stage of their schooling (lower primary, upper primary, lower secondary, middle secondary) they had most enjoyed learning science. Crosstabulations of responses revealed that around 78% of students indicated that they had enjoyed learning science more in secondary than in primary school, and 55% enjoyed it the most during Years 9 and 10. The perception that school science was more enjoyable in high school was also found among students who did not intend taking science in Year 11, though to a lesser extent. These findings are unexpected and significant, challenging the prevailing view that enjoyment of school science steadily declines after primary school. The paper elaborates on the findings and suggests that the different conclusions arrived at by studies in this field may be due to the different methodologies employed.
Resumo:
This paper explores issues of gender in Year 10 Australian students‘ experiences of science at school, their self-reported ability in science and their perceptions of science as a subject choice for senior secondary school. A sample of 3759 Year 10 students from across Australia responded to Likert-style questions related to these issues, with findings showing gender differences in perceptions of science, self-rated ability, and reasons for choosing not to study further science. Moreover, interesting contrasts were revealed in patterns of difference of self-rated ability for boys and girls across single-sex and co-educational schools.