997 resultados para NEURAL HETEROGENEITY
Resumo:
Breast cancer is a heterogeneous disease, at both an inter- and intra-tumoural level. Appreciating heterogeneity through the application of biomarkers and molecular signatures adds complexity to tumour taxonomy but is key to personalising diagnosis, treatment and prognosis. The extent to which heterogeneity exists, and its interpretation remains a challenge to pathologists. Using HER2 as an exemplar, we have developed a simple reproducible heterogeneity index. Cell-to-cell HER2 heterogeneity was extensive in a proportion of both reported 'amplified' and 'non-amplified' cases. The highest levels of heterogeneity objectively identified occurred in borderline categories and higher ratio non-amplified cases. A case with particularly striking heterogeneity was analysed further with an array of biomarkers in order to assign a molecular diagnosis. Broad biological complexity was evident. In essence, interpretation, depending on the area of tumour sampled, could have been one of three distinct phenotypes, each of which would infer different therapeutic interventions. Therefore, we recommend that heterogeneity is assessed and taken into account when determining treatment options.
Resumo:
Cross education is the process whereby training of one limb gives rise to increases in the subsequent performance of its opposite counterpart. The execution of many unilateral tasks is associated with increased excitability of corticospinal projections from primary motor cortex (M1) to the opposite limb. It has been proposed that these effects are causally related. Our aim was to establish whether changes in corticospinal excitability arising from prior training of the opposite limb determine levels of interlimb transfer.
We used three vision conditions shown previously to modulate the excitability of corticospinal projections to the inactive (right) limb during wrist flexion movements performed by the training (left) limb. These were: mirrored visual feedback of the training limb; no visual feedback of either limb; and visual feedback of the inactive limb. Training comprised 300 discrete, ballistic wrist flexion movements executed as rapidly as possible. Performance of the right limb on the same task was assessed prior to, at the mid point of, and following left limb training.
There was no evidence that variations in the excitability of corticospinal projections (assessed by transcranial magnetic stimulation (TMS)) to the inactive limb were associated with, or predictive of, the extent of interlimb transfer that was expressed. There were however associations between alterations in muscle activation dynamics observed for the untrained limb, and the degree of positive transfer that arose from training of the opposite limb.
The results suggest that the acute adaptations that mediate the bilateral performance gains realised through unilateral practice of this ballistic wrist flexion task are mediated by neural elements other than those within M1 that are recruited at rest by single-pulse TMS.
Resumo:
Purpose:
A number of independent gene expression profiling studies have identified transcriptional subtypes in colorectal cancer (CRC) with potential diagnostic utility, culminating in publication of a CRC Consensus Molecular Subtype classification. The worst prognostic subtype has been defined by genes associated with stem-like biology. Recently, it has been shown that the majority of genes associated with this poor prognostic group are stromal-derived. We investigated the potential for tumor misclassification into multiple diagnostic subgroups based on tumoral region sampled.
Experimental Design:
We performed multi-region tissue RNA extraction/transcriptomic analysis using Colorectal Specific Arrays on invasive front, central tumor and lymph node regions selected from tissue samples from 25 CRC patients.
Results:
We identified a consensus 30 gene list which represents the intratumoral heterogeneity within a cohort of primary CRC tumors. Using a series of online datasets, we showed that this gene list displays prognostic potential (HR=2.914 (CI 0.9286-9.162) in stage II/III CRC patients, but in addition we demonstrated that these genes are stromal derived, challenging the assumption that poor prognosis tumors with stem-like biology have undergone a widespread Epithelial Mesenchymal Transition (EMT). Most importantly, we showed that patients can be simultaneously classified into multiple diagnostically relevant subgroups based purely on the tumoral region analysed.
Conclusions:
Gene expression profiles derived from the non-malignant stromal region can influence assignment of CRC transcriptional subtypes, questioning the current molecular classification dogma and highlighting the need to consider pathology sampling region and degree of stromal infiltration when employing transcription-based classifiers to underpin clinical decision-making in CRC.
Resumo:
Some plants of genus Schinus have been used in the folk medicine as topical antiseptic, digestive, purgative, diuretic, analgesic or antidepressant, and also for respiratory and urinary infections. Chemical composition of essential oils of S. molle and S. terebinthifolius had been evaluated and presented high variability according with the part of the plant studied and with the geographic and climatic regions. The pharmacological properties, namely antimicrobial, anti-tumoural and anti-inflammatory activities are conditioned by chemical composition of essential oils. Taking into account the difficulty to infer the pharmacological properties of Schinus essential oils without hard experimental approach, this work will focus on the development of a decision support system, in terms of its knowledge representation and reasoning procedures, under a formal framework based on Logic Programming, complemented with an approach to computing centered on Artificial Neural Networks and the respective Degree-of-Confidence that one has on such an occurrence.
Resumo:
Sound localization can be defined as the ability to identify the position of an input sound source and is considered a powerful aspect of mammalian perception. For low frequency sounds, i.e., in the range 270 Hz-1.5 KHz, the mammalian auditory pathway achieves this by extracting the Interaural Time Difference between sound signals being received by the left and right ear. This processing is performed in a region of the brain known as the Medial Superior Olive (MSO). This paper presents a Spiking Neural Network (SNN) based model of the MSO. The network model is trained using the Spike Timing Dependent Plasticity learning rule using experimentally observed Head Related Transfer Function data in an adult domestic cat. The results presented demonstrate how the proposed SNN model is able to perform sound localization with an accuracy of 91.82% when an error tolerance of +/-10 degrees is used. For angular resolutions down to 2.5 degrees , it will be demonstrated how software based simulations of the model incur significant computation times. The paper thus also addresses preliminary implementation on a Field Programmable Gate Array based hardware platform to accelerate system performance.
Resumo:
In this paper, a spiking neural network (SNN) architecture to simulate the sound localization ability of the mammalian auditory pathways using the interaural intensity difference cue is presented. The lateral superior olive was the inspiration for the architecture, which required the integration of an auditory periphery (cochlea) model and a model of the medial nucleus of the trapezoid body. The SNN uses leaky integrateand-fire excitatory and inhibitory spiking neurons, facilitating synapses and receptive fields. Experimentally derived headrelated transfer function (HRTF) acoustical data from adult domestic cats were employed to train and validate the localization ability of the architecture, training used the supervised learning algorithm called the remote supervision method to determine the azimuthal angles. The experimental results demonstrate that the architecture performs best when it is localizing high-frequency sound data in agreement with the biology, and also shows a high degree of robustness when the HRTF acoustical data is corrupted by noise.
Resumo:
The most biologically-inspired artificial neurons are those of the third generation, and are termed spiking neurons, as individual pulses or spikes are the means by which stimuli are communicated. In essence, a spike is a short-term change in electrical potential and is the basis of communication between biological neurons. Unlike previous generations of artificial neurons, spiking neurons operate in the temporal domain, and exploit time as a resource in their computation. In 1952, Alan Lloyd Hodgkin and Andrew Huxley produced the first model of a spiking neuron; their model describes the complex electro-chemical process that enables spikes to propagate through, and hence be communicated by, spiking neurons. Since this time, improvements in experimental procedures in neurobiology, particularly with in vivo experiments, have provided an increasingly more complex understanding of biological neurons. For example, it is now well-understood that the propagation of spikes between neurons requires neurotransmitter, which is typically of limited supply. When the supply is exhausted neurons become unresponsive. The morphology of neurons, number of receptor sites, amongst many other factors, means that neurons consume the supply of neurotransmitter at different rates. This in turn produces variations over time in the responsiveness of neurons, yielding various computational capabilities. Such improvements in the understanding of the biological neuron have culminated in a wide range of different neuron models, ranging from the computationally efficient to the biologically realistic. These models enable the modeling of neural circuits found in the brain.
Resumo:
The most biologically-inspired artificial neurons are those of the third generation, and are termed spiking neurons, as individual pulses or spikes are the means by which stimuli are communicated. In essence, a spike is a short-term change in electrical potential and is the basis of communication between biological neurons. Unlike previous generations of artificial neurons, spiking neurons operate in the temporal domain, and exploit time as a resource in their computation. In 1952, Alan Lloyd Hodgkin and Andrew Huxley produced the first model of a spiking neuron; their model describes the complex electro-chemical process that enables spikes to propagate through, and hence be communicated by, spiking neurons. Since this time, improvements in experimental procedures in neurobiology, particularly with in vivo experiments, have provided an increasingly more complex understanding of biological neurons. For example, it is now well understood that the propagation of spikes between neurons requires neurotransmitter, which is typically of limited supply. When the supply is exhausted neurons become unresponsive. The morphology of neurons, number of receptor sites, amongst many other factors, means that neurons consume the supply of neurotransmitter at different rates. This in turn produces variations over time in the responsiveness of neurons, yielding various computational capabilities. Such improvements in the understanding of the biological neuron have culminated in a wide range of different neuron models, ranging from the computationally efficient to the biologically realistic. These models enable the modelling of neural circuits found in the brain. In recent years, much of the focus in neuron modelling has moved to the study of the connectivity of spiking neural networks. Spiking neural networks provide a vehicle to understand from a computational perspective, aspects of the brain’s neural circuitry. This understanding can then be used to tackle some of the historically intractable issues with artificial neurons, such as scalability and lack of variable binding. Current knowledge of feed-forward, lateral, and recurrent connectivity of spiking neurons, and the interplay between excitatory and inhibitory neurons is beginning to shed light on these issues, by improved understanding of the temporal processing capabilities and synchronous behaviour of biological neurons. This research topic aims to amalgamate current research aimed at tackling these phenomena.
Resumo:
In the field of control systems it is common to use techniques based on model adaptation to carry out control for plants for which mathematical analysis may be intricate. Increasing interest in biologically inspired learning algorithms for control techniques such as Artificial Neural Networks and Fuzzy Systems is in progress. In this line, this paper gives a perspective on the quality of results given by two different biologically connected learning algorithms for the design of B-spline neural networks (BNN) and fuzzy systems (FS). One approach used is the Genetic Programming (GP) for BNN design and the other is the Bacterial Evolutionary Algorithm (BEA) applied for fuzzy rule extraction. Also, the facility to incorporate a multi-objective approach to the GP algorithm is outlined, enabling the designer to obtain models more adequate for their intended use.
Resumo:
The design phase of B-spline neural networks is a highly computationally complex task. Existent heuristics have been found to be highly dependent on the initial conditions employed. Increasing interest in biologically inspired learning algorithms for control techniques such as Artificial Neural Networks and Fuzzy Systems is in progress. In this paper, the Bacterial Programming approach is presented, which is based on the replication of the microbial evolution phenomenon. This technique produces an efficient topology search, obtaining additionally more consistent solutions.
Resumo:
Current and past research has brought up new views related to the optimization of neural networks. For a fixed structure, second order methods are seen as the most promising. From previous works we have shown how second order methods are of easy applicability to a neural network. Namely, we have proved how the Levenberg-Marquard possesses not only better convergence but how it can assure the convergence to a local minima. However, as any gradient-based method, the results obtained depend on the startup point. In this work, a reformulated Evolutionary algorithm - the Bacterial Programming for Levenberg-Marquardt is proposed, as an heuristic which can be used to determine the most suitable starting points, therefore achieving, in most cases, the global optimum.
Resumo:
The design phase of B-spline neural networks represents a very high computational task. For this purpose, heuristics have been developed, but have been shown to be dependent on the initial conditions employed. In this paper a new technique, Bacterial Programming, is proposed, whose principles are based on the replication of the microbial evolution phenomenon. The performance of this approach is illustrated and compared with existing alternatives.
Resumo:
This experimental study focuses on a detection system at the seismic station level that should have a similar role to the detection algorithms based on the ratio STA/LTA. We tested two types of neural network: Multi-Layer Perceptrons and Support Vector Machines, trained in supervised mode. The universe of data consisted of 2903 patterns extracted from records of the PVAQ station, of the seismography network of the Institute of Meteorology of Portugal. The spectral characteristics of the records and its variation in time were reflected in the input patterns, consisting in a set of values of power spectral density in selected frequencies, extracted from a spectro gram calculated over a segment of record of pre-determined duration. The universe of data was divided, with about 60% for the training and the remainder reserved for testing and validation. To ensure that all patterns in the universe of data were within the range of variation of the training set, we used an algorithm to separate the universe of data by hyper-convex polyhedrons, determining in this manner a set of patterns that have a mandatory part of the training set. Additionally, an active learning strategy was conducted, by iteratively incorporating poorly classified cases in the training set. The best results, in terms of sensitivity and selectivity in the whole data ranged between 98% and 100%. These results compare very favorably with the ones obtained by the existing detection system, 50%.