860 resultados para Multilayer artificial neural networks
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
This paper presents a Computer Aided Diagnosis (CAD) system that automatically classifies microcalcifications detected on digital mammograms into one of the five types proposed by Michele Le Gal, a classification scheme that allows radiologists to determine whether a breast tumor is malignant or not without the need for surgeries. The developed system uses a combination of wavelets and Artificial Neural Networks (ANN) and is executed on an Altera DE2-115 Development Kit, a kit containing a Field-Programmable Gate Array (FPGA) that allows the system to be smaller, cheaper and more energy efficient. Results have shown that the system was able to correctly classify 96.67% of test samples, which can be used as a second opinion by radiologists in breast cancer early diagnosis. (C) 2013 The Authors. Published by Elsevier B.V.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The present paper aims at applying a model of bilingual onomasiological terminological dictionary, as proposed by Babini (2001b), for the development of an English-Portuguese and Portuguese-English electronic dictionary of the fundamental Artificial Neural Networks (ANN) terms. This subarea of Artificial Intelligence was chosen due to its use in several technological activities. The onomasiological dictionary is characterized by allowing searches of either lexical or terminological units from its semantic content. Our dictionary model allows two types of search: semasiological and onomasiological. The onomasiological search is made possible by a set of semes or semantic traits that make up the concept of each term in the dictionary.
Resumo:
Pós-graduação em Design - FAAC
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
The aim of this work is to advance a new approach for estimating demographic density, through combining a Geographic Information System with GMDH Neural Networks. The model that is suggested parts the analyzed space into a rectangular grid formed by multiple cells measuring 0.01 km2 each. The forecasts are elaborated based on the demographic density in each cell and in its neighboring cells at a given time. Despite the limited availability of data during the modeling phase, the utilization of this method for studying a Brazilian medium-sized city presented promising results.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The objective of this work was to typify, through physicochemical parameters, honey from Campos do Jordão’s microrregion, and verify how samples are grouped in accordance with the climatic production seasonality (summer and winter). It were assessed 30 samples of honey from beekeepers located in the cities of Monteiro Lobato, Campos do Jordão, Santo Antonio do Pinhal e São Bento do Sapucaí-SP, regarding both periods of honey production (November to February; July to September, during 2007 and 2008; n = 30). Samples were submitted to physicochemical analysis of total acidity, pH, humidity, water activity, density, aminoacids, ashes, color and electrical conductivity, identifying physicochemical standards of honey samples from both periods of production. Next, we carried out a cluster analysis of data using k-means algorithm, which grouped the samples into two classes (summer and winter). Thus, there was a supervised training of an Artificial Neural Network (ANN) using backpropagation algorithm. According to the analysis, the knowledge gained through the ANN classified the samples with 80% accuracy. It was observed that the ANNs have proved an effective tool to group samples of honey of the region of Campos do Jordao according to their physicochemical characteristics, depending on the different production periods.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
A power transformer needs continuous monitoring and fast protection as it is a very expensive piece of equipment and an essential element in an electrical power system. The most common protection technique used is the percentage differential logic, which provides discrimination between an internal fault and different operating conditions. Unfortunately, there are some operating conditions of power transformers that can mislead the conventional protection affecting the power system stability negatively. This study proposes the development of a new algorithm to improve the protection performance by using fuzzy logic, artificial neural networks and genetic algorithms. An electrical power system was modelled using Alternative Transients Program software to obtain the operational conditions and fault situations needed to test the algorithm developed, as well as a commercial differential relay. Results show improved reliability, as well as a fast response of the proposed technique when compared with conventional ones.
Resumo:
In this article we propose an efficient and accurate method for fault location in underground distribution systems by means of an Optimum-Path Forest (OPF) classifier. We applied the time domains reflectometry method for signal acquisition, which was further analyzed by OPF and several other well-known pattern recognition techniques. The results indicated that OPF and support vector machines outperformed artificial neural networks and a Bayesian classifier, but OPF was much more efficient than all classifiers for training, and the second fastest for classification.