926 resultados para Mr. Robot
Resumo:
Celebrado el 24 de mayo en el Edificio de Informática y Matemáticas de la ULPGC
Resumo:
[EN]Detecting people is a key capability for robots that operate in populated environments. In this paper, we have adopted a hierarchical approach that combines classifiers created using supervised learning in order to identify whether a person is in the view-scope of the robot or not. Our approach makes use of vision, depth and thermal sensors mounted on top of a mobile platform.
Resumo:
My work is focused on George Friel, a distinguished Scottish writer known for his witty style bristling with puns and more or less literary allusions. In particular I proposed an annotated translation of what can be considered his masterpiece “Mr Alfred M.A.” in which wordplay has a central role for its plot. In the first part of my thesis I outlined the fundamental features of Friel’s writing: the wide variety of registers and styles, the rhythm and irony. Additionally I pointed out the strategies that the translator has to face when translating this text. Finally I identified the number of problems which may arise while translating Friel’s “Mr Alfred M.A.” into Italian with particular concern on the strategies of supplementation and explicitation for wordplay.
Resumo:
[ES]This paper describes some simple but useful computer vision techniques for human-robot interaction. First, an omnidirectional camera setting is described that can detect people in the surroundings of the robot, giving their angular positions and a rough estimate of the distance. The device can be easily built with inexpensive components. Second, we comment on a color-based face detection technique that can alleviate skin-color false positives. Third, a simple head nod and shake detector is described, suitable for detecting affirmative/negative, approval/dissaproval, understanding/disbelief head gestures.
Resumo:
In the collective imaginaries a robot is a human like machine as any androids in science fiction. However the type of robots that you will encounter most frequently are machinery that do work that is too dangerous, boring or onerous. Most of the robots in the world are of this type. They can be found in auto, medical, manufacturing and space industries. Therefore a robot is a system that contains sensors, control systems, manipulators, power supplies and software all working together to perform a task. The development and use of such a system is an active area of research and one of the main problems is the development of interaction skills with the surrounding environment, which include the ability to grasp objects. To perform this task the robot needs to sense the environment and acquire the object informations, physical attributes that may influence a grasp. Humans can solve this grasping problem easily due to their past experiences, that is why many researchers are approaching it from a machine learning perspective finding grasp of an object using information of already known objects. But humans can select the best grasp amongst a vast repertoire not only considering the physical attributes of the object to grasp but even to obtain a certain effect. This is why in our case the study in the area of robot manipulation is focused on grasping and integrating symbolic tasks with data gained through sensors. The learning model is based on Bayesian Network to encode the statistical dependencies between the data collected by the sensors and the symbolic task. This data representation has several advantages. It allows to take into account the uncertainty of the real world, allowing to deal with sensor noise, encodes notion of causality and provides an unified network for learning. Since the network is actually implemented and based on the human expert knowledge, it is very interesting to implement an automated method to learn the structure as in the future more tasks and object features can be introduced and a complex network design based only on human expert knowledge can become unreliable. Since structure learning algorithms presents some weaknesses, the goal of this thesis is to analyze real data used in the network modeled by the human expert, implement a feasible structure learning approach and compare the results with the network designed by the expert in order to possibly enhance it.
Resumo:
Zusammenfassung: Michael EbertEntwicklung eines leistungsstarken Polarisators und Kompressorsfür 3-He für medizinische MR Tomographie Durch Optisches Pumpen von metastabilem3-He*--Gas bei einem Druck von 1 mb und Spinübertrag mittels Metastabileraustauschstöße aufden Grundzustand, wird 3-He auf 53 % bei einemmittleren Fluß von f = 58 bar*liter/Tag aufpolarisiert. Bei einem Fluß von f = 122bar*l/Tag wird immer noch eine Polarisation von 30 % erzielt. DurchSteigerung der Laserleistung von derzeit 12 Watt aufwünschenswerte 30 Watt, könnten beigleichem Fluß Kernspinpolarisationen des Heliums von 70 % erreicht werden. Mittels einer eigens entwickelten Ganzmetall--Titan--Kolbenpumpeerfolgt die Kompression in zwei Stufen. Zuerst wird einZwischenvolumen auf Drücke 200 bis 800 mb,je nach Anwendung gefüllt. Mit dem selben Kompressor könnenanschließend abnehmbare, verschließbare Experimentierzellen ausdiesem Zwischenvolumen auf Drücke 1 bis 6 bar gefüllt werden. Auf Grund des großen Hubvolumens von 15,4 Liter können große Gasmengen proKompressionszyklus verdichtet werden. Wegen des großen Verhältnisaus Kompressionshub h = 100 cm undKompressordurchmesser 14 cm kommt es imKompressionsraum zu keinen meßbaren Polarisationsverlusten.Zusammen mit dem großen Kompressionsfaktor von K = 10000sind diese konstruktiven Maßnahmen für den vollständigen Erhaltder Polarisation bei der Kompression des polarizierten 3-He--Gasesverantwortlich. Diese großen Gasmengen an hyperpolarisiertem 3-He haben ersteklinische Studien funktioneller Lungen--MRT ermöglicht. DurchMessung des Sauerstoffpartialdrucks und dessen Abnahmerate, derBestimmung der Ventillation und Messung der DiffusionskonstantenADC in der Lunge, können die Funktionen dieses Organs lokalquantitativ beurteilt werden.
Resumo:
La tesi descrive il funzionamento del robot chirurgico Da Vinci S ed illustra la sua architettura. Si analizza poi il suo impiego in ambito otorinolaringoiatrico mostrando vantaggi e limiti di questa innovativa tecnologia.
Resumo:
Uno dei principali ambiti di ricerca dell’intelligenza artificiale concerne la realizzazione di agenti (in particolare, robot) in grado di aiutare o sostituire l’uomo nell’esecuzione di determinate attività. A tal fine, è possibile procedere seguendo due diversi metodi di progettazione: la progettazione manuale e la progettazione automatica. Quest’ultima può essere preferita alla prima nei contesti in cui occorra tenere in considerazione requisiti quali flessibilità e adattamento, spesso essenziali per lo svolgimento di compiti non banali in contesti reali. La progettazione automatica prende in considerazione un modello col quale rappresentare il comportamento dell’agente e una tecnica di ricerca (oppure di apprendimento) che iterativamente modifica il modello al fine di renderlo il più adatto possibile al compito in esame. In questo lavoro, il modello utilizzato per la rappresentazione del comportamento del robot è una rete booleana (Boolean network o Kauffman network). La scelta di tale modello deriva dal fatto che possiede una semplice struttura che rende agevolmente studiabili le dinamiche tuttavia complesse che si manifestano al suo interno. Inoltre, la letteratura recente mostra che i modelli a rete, quali ad esempio le reti neuronali artificiali, si sono dimostrati efficaci nella programmazione di robot. La metodologia per l’evoluzione di tale modello riguarda l’uso di tecniche di ricerca meta-euristiche in grado di trovare buone soluzioni in tempi contenuti, nonostante i grandi spazi di ricerca. Lavori precedenti hanno gia dimostrato l’applicabilità e investigato la metodologia su un singolo robot. Lo scopo di questo lavoro è quello di fornire prova di principio relativa a un insieme di robot, aprendo nuove strade per la progettazione in swarm robotics. In questo scenario, semplici agenti autonomi, interagendo fra loro, portano all’emergere di un comportamento coordinato adempiendo a task impossibili per la singola unità. Questo lavoro fornisce utili ed interessanti opportunità anche per lo studio delle interazioni fra reti booleane. Infatti, ogni robot è controllato da una rete booleana che determina l’output in funzione della propria configurazione interna ma anche dagli input ricevuti dai robot vicini. In questo lavoro definiamo un task in cui lo swarm deve discriminare due diversi pattern sul pavimento dell’arena utilizzando solo informazioni scambiate localmente. Dopo una prima serie di esperimenti preliminari che hanno permesso di identificare i parametri e il migliore algoritmo di ricerca, abbiamo semplificato l’istanza del problema per meglio investigare i criteri che possono influire sulle prestazioni. E’ stata così identificata una particolare combinazione di informazione che, scambiata localmente fra robot, porta al miglioramento delle prestazioni. L’ipotesi è stata confermata applicando successivamente questo risultato ad un’istanza più difficile del problema. Il lavoro si conclude suggerendo nuovi strumenti per lo studio dei fenomeni emergenti in contesti in cui le reti booleane interagiscono fra loro.
Resumo:
This thesis deals with distributed control strategies for cooperative control of multi-robot systems. Specifically, distributed coordination strategies are presented for groups of mobile robots. The formation control problem is initially solved exploiting artificial potential fields. The purpose of the presented formation control algorithm is to drive a group of mobile robots to create a completely arbitrarily shaped formation. Robots are initially controlled to create a regular polygon formation. A bijective coordinate transformation is then exploited to extend the scope of this strategy, to obtain arbitrarily shaped formations. For this purpose, artificial potential fields are specifically designed, and robots are driven to follow their negative gradient. Artificial potential fields are then subsequently exploited to solve the coordinated path tracking problem, thus making the robots autonomously spread along predefined paths, and move along them in a coordinated way. Formation control problem is then solved exploiting a consensus based approach. Specifically, weighted graphs are used both to define the desired formation, and to implement collision avoidance. As expected for consensus based algorithms, this control strategy is experimentally shown to be robust to the presence of communication delays. The global connectivity maintenance issue is then considered. Specifically, an estimation procedure is introduced to allow each agent to compute its own estimate of the algebraic connectivity of the communication graph, in a distributed manner. This estimate is then exploited to develop a gradient based control strategy that ensures that the communication graph remains connected, as the system evolves. The proposed control strategy is developed initially for single-integrator kinematic agents, and is then extended to Lagrangian dynamical systems.
Resumo:
The diagnosis, grading and classification of tumours has benefited considerably from the development of DCE-MRI which is now essential to the adequate clinical management of many tumour types due to its capability in detecting active angiogenesis. Several strategies have been proposed for DCE-MRI evaluation. Visual inspection of contrast agent concentration curves vs time is a very simple yet operator dependent procedure, therefore more objective approaches have been developed in order to facilitate comparison between studies. In so called model free approaches, descriptive or heuristic information extracted from time series raw data have been used for tissue classification. The main issue concerning these schemes is that they have not a direct interpretation in terms of physiological properties of the tissues. On the other hand, model based investigations typically involve compartmental tracer kinetic modelling and pixel-by-pixel estimation of kinetic parameters via non-linear regression applied on region of interests opportunely selected by the physician. This approach has the advantage to provide parameters directly related to the pathophysiological properties of the tissue such as vessel permeability, local regional blood flow, extraction fraction, concentration gradient between plasma and extravascular-extracellular space. Anyway, nonlinear modelling is computational demanding and the accuracy of the estimates can be affected by the signal-to-noise ratio and by the initial solutions. The principal aim of this thesis is investigate the use of semi-quantitative and quantitative parameters for segmentation and classification of breast lesion. The objectives can be subdivided as follow: describe the principal techniques to evaluate time intensity curve in DCE-MRI with focus on kinetic model proposed in literature; to evaluate the influence in parametrization choice for a classic bi-compartmental kinetic models; to evaluate the performance of a method for simultaneous tracer kinetic modelling and pixel classification; to evaluate performance of machine learning techniques training for segmentation and classification of breast lesion.