908 resultados para Motor vehicle design
Resumo:
Design Proposal for the Blue Lunar Support Hub The conceptual design of a space station is one of the most challenging tasks in aerospace engineering. The history of the space station Mir and the assembly of the International Space Station demonstrate that even within the assembly phase quick solutions have to be found to cope with budget and technical problems or changing objectives. This report is the outcome of the conceptual design of the Space Station Design Workshop (SSDW) 2007, which took place as an international design project from the 16th to the 21st of July 2007 at the Australian Centre for Field Robotics (ACFR), University of Sydney, Australia. The participants were tasked to design a human-tended space station in low lunar orbit (LLO) focusing on supporting future missions to the moon in a programmatic context of space exploration beyond low Earth orbit (LEO). The design included incorporating elements from systems engineering to interior architecture. The customised, intuitive, rapid-turnaround software tools enabled the team to successfully tackle the complex problem of conceptual design of crewed space systems. A strong emphasis was put on improving the integration of the human crew, as it is the major contributor to mission success, while always respecting the boundary conditions imposed by the challenging environment of space. This report documents the methodology, tools and outcomes of the Space Station Design Workshop during the SSDW 2007. The design results produced by Team Blue are presented.
Resumo:
Functional connectivity (FC) analyses of resting-state fMRI data allow for the mapping of large-scale functional networks, and provide a novel means of examining the impact of dopaminergic challenge. Here, using a double-blind, placebo-controlled design, we examined the effect of L-dopa, a dopamine precursor, on striatal resting-state FC in 19 healthy young adults.Weexamined the FC of 6 striatal regions of interest (ROIs) previously shown to elicit networks known to be associated with motivational, cognitive and motor subdivisions of the caudate and putamen (Di Martino et al., 2008). In addition to replicating the previously demonstrated patterns of striatal FC, we observed robust effects of L-dopa. Specifically, L-dopa increased FC in motor pathways connecting the putamen ROIs with the cerebellum and brainstem. Although L-dopa also increased FC between the inferior ventral striatum and ventrolateral prefrontal cortex, it disrupted ventral striatal and dorsal caudate FC with the default mode network. These alterations in FC are consistent with studies that have demonstrated dopaminergic modulation of cognitive and motor striatal networks in healthy participants. Recent studies have demonstrated altered resting state FC in several conditions believed to be characterized by abnormal dopaminergic neurotransmission. Our findings suggest that the application of similar experimental pharmacological manipulations in such populations may further our understanding of the role of dopaminergic neurotransmission in those conditions.
Resumo:
Road transport plays a significant role in various industries and mobility services around the globe and has a vital impact on our daily lives. However it also has serious impacts on both public health and the environment. In-vehicle feedback systems are a relatively new approach to encouraging driver behavior change for improving fuel efficiency and safety in automotive environments. While many studies claim that the adoption of eco-driving practices, such as eco-driving training programs and in-vehicle feedback to drivers, has the potential to improve fuel efficiency, limited research has integrated safety and eco-driving. Therefore, it is crucial to understand the human factors related theories and practices which will inform the design of an in-vehicle Human Machine Interface (HMI) that could provide real-time driver feedback and consequently improve both fuel efficiency and safety. This paper provides a comprehensive review of the current state of published literature on in-vehicle systems to identify and evaluate the impact of eco-driving and safety feedback systems. This paper also discusses how these factors may conflict with one another and have a negative effect on road safety, while also exploring possible eco-driving practices that could encourage more sustainable, environmentally-conscious and safe driving behavior. The review revealed a lack of comprehensive theoretical research integrating eco-driving and safe driving, and no current available HMI covering both aspects simultaneously. Furthermore, the review identified that some eco-driving in-vehicle systems may enhance fuel efficiency without compromising safety. The review has identified a range of concepts which can be developed to influence driver acceptance of safety and eco-driving systems within the area of HMI. This can promote new research aimed at enhancing our understanding of the relationship between eco-driving and safety from the human factors viewpoint. This provides a foundation for developing innovative, persuasive and acceptable in-vehicle HMI systems to improve fuel efficiency and road safety.
Resumo:
Safety culture is a term with numerous definitions in the literature. Many authors advocate a prescriptive approach to safety culture in which if an organisation has certain levels of externally prescribed systems and structures in place it has a “good safety culture”. Conversely, other researchers suggest an anthropological approach of exploring deep meanings and understandings present within an organisation’s workforce. In a recent published review, the authors presented an alternative view to safety culture, in which the anthropological aspects of safety culture interact with the structures and systems in place within an organisation to result in behavioural patterns. This can be viewed as a human factors approach to safety culture in which, through understanding the specific interactions between the culture of a workforce and external organisational elements, organisational structures and systems can be optimised in order to shape worker behaviour and improve safety. This paper presents findings from a recent investigation of safety culture in the Australian heavy vehicle (transport) industry. Selected results are discussed to explore how understanding culture can provide direction to the optimisation of organisational structures and systems to match worker culture and thus improve safety. Specifically the value placed on personal experience and stories, as well as on both time and money are discussed, and interventions that are suited to these aspects of the culture are discussed. These findings demonstrate the importance of shifting beyond mere prescriptive and interpretive approaches to safety culture and instead to focus on the interaction between cultural and contextual elements to optimise organisational structures and systems.
Resumo:
The era of knowledge-based urban development has led to an unprecedented increase in mobility of people and the subsequent growth in new typologies of agglomerated enclaves of knowledge such as knowledge and innovation spaces. Within this context, a new role has been assigned to contemporary public spaces to attract and retain the mobile knowledge workforce by creating a sense of place. This paper investigates place making in the globalized knowledge economy, which develops a sense of permanence spatio-temporally to knowledge workers displaying a set of particular characteristics and simultaneously is process-dependent getting developed by the internal and external flows and contributing substantially in the development of the broader context it stands in relation with. The paper reviews the literature and highlights observations from Kelvin Grove Urban Village, located in Australia’s new world city Brisbane, to understand the application of urban design as a vehicle to create and sustain place making in knowledge and innovation spaces. This research seeks to analyze the modified permeable typology of public spaces that makes knowledge and innovation spaces more viable and adaptive as per the changing needs of the contemporary globalized knowledge society.
Resumo:
A key component of robotic path planning is ensuring that one can reliably navigate a vehicle to a desired location. In addition, when the features of interest are dynamic and move with oceanic currents, vehicle speed plays an important role in the planning exercise to ensure that vehicles are in the right place at the right time. Aquatic robot design is moving towards utilizing the environment for propulsion rather than traditional motors and propellers. These new vehicles are able to realize significantly increased endurance, however the mission planning problem, in turn, becomes more difficult as the vehicle velocity is not directly controllable. In this paper, we examine Gaussian process models applied to existing wave model data to predict the behavior, i.e., velocity, of a Wave Glider Autonomous Surface Vehicle. Using training data from an on-board sensor and forecasting with the WAVEWATCH III model, our probabilistic regression models created an effective method for forecasting WG velocity.
Resumo:
A global framework for linear stability analyses of traffic models, based on the dispersion relation root locus method, is presented and is applied taking the example of a broad class of car-following (CF) models. This approach is able to analyse all aspects of the dynamics: long waves and short wave behaviours, phase velocities and stability features. The methodology is applied to investigate the potential benefits of connected vehicles, i.e. V2V communication enabling a vehicle to send and receive information to and from surrounding vehicles. We choose to focus on the design of the coefficients of cooperation which weights the information from downstream vehicles. The coefficients tuning is performed and different ways of implementing an efficient cooperative strategy are discussed. Hence, this paper brings design methods in order to obtain robust stability of traffic models, with application on cooperative CF models
Resumo:
Aim: To systematically review the literature investigating the incidence of fatal and or nonfatal low-speed vehicle run-over (LSVRO) incidents in children aged 0–15 years. Methods: The following databases were searched using specific search terms, from their date of conception up to June 2011: Cochrane Library, Medline, CINAHL, Embase, AMI, Sociological Abstracts, ERIC, PsycArticles, PsycInfo, Urban Studies and Planning; Australian Criminology Database; Dissertations and Thesis; Academic Research Library; Social Services Abstracts; Family and Society; Scopus; and Web of Science. A total of 128 articles were identified in the databases (33 found by hand searching). The title and abstract of these were read, and 102 were removed because they were not primary research articles relating to LSVRO-type injuries. Twenty-six articles were assessed against the inclusion (reporting population level incidence rates) and exclusion criteria, 19 of which were excluded, leaving a total of five articles for inclusion in the review. Findings: Five studies were identified that met the inclusion criteria. The incidence rate in nonfatal LSVRO events varied in the range of 7.09 to 14.79 per 100,000 and from 0.63 to 3.2 per 100,000 in fatal events. Discussion: Using International Classification of Diseases codes for classifying fatal or nonfatal LSVRO incidents is problematic as there is no specific code for LSVRO. The current body of research is void of a comprehensive secular population data analysis. Only with an improved spectrum of incidence rates will appropriate evaluation of this problem be possible, and this will inform nursing prevention interventions. The effect of LSVRO incidents is clearly understudied. More research is required to address incidence rates in relation to culture, environment, risk factors, car design, and injury characteristics. Conclusions: Thevlack of nursing research or policy around this area of injury, most often to children, indicates a field of inquiry and policy development that needs attention.
Resumo:
This paper presents a motion control system for guidance of an underactuated Unmanned Underwater Vehicle (UUV) on a helical trajectory. The control strategy is developed using Port-Hamiltonian theory and interconnection and damping assignment passivity-based control. Using energy routing, the trajectory of a virtual fully actuated plant is guided onto a vector field. A tracking controller is then used that commands the underactuated plant to follow the velocity of the virtual plant. An integral control is inserted between the two control layers, which adds robustness and disturbance rejection to the design.
Resumo:
This paper presents a motion control system for tracking of attitude and speed of an underactuated slender-hull unmanned underwater vehicle. The feedback control strategy is developed using the Port-Hamiltonian theory. By shaping of the target dynamics (desired dynamic response in closed loop) with particular attention to the target mass matrix, the influence of the unactuated dynamics on the controlled system is suppressed. This results in achievable dynamics independent of stable uncontrolled states. Throughout the design, the insight of the physical phenomena involved is used to propose the desired target dynamics. Integral action is added to the system for robustness and to reject steady disturbances. This is achieved via a change of coordinates that result in input-to-state stable (ISS) target dynamics. As a final step in the design, an anti-windup scheme is implemented to account for limited actuator capacity, namely saturation. The performance of the design is demonstrated through simulation with a high-fidelity model.
Resumo:
This paper develops a seven-level inverter structure for open-end winding induction motor drives. The inverter supply is realized by cascading four two-level and two three-level neutral-point-clamped inverters. The inverter control is designed in such a way that the common-mode voltage (CMV) is eliminated. DC-link capacitor voltage balancing is also achieved by using only the switching-state redundancies. The proposed power circuit structure is modular and therefore suitable for fault-tolerant applications. By appropriately isolating some of the inverters, the drive can be operated during fault conditions in a five-level or a three-level inverter mode, with preserved CMV elimination and DC-link capacitor voltage balancing, within a reduced modulation range.
Resumo:
Speed is recognised as a key contributor to crash likelihood and severity, and to road safety performance in general. Its fundamental role has been recognised by making Safe Speeds one of the four pillars of the Safe System. In this context, impact speeds above which humans are likely to sustain fatal injuries have been accepted as a reference in many Safe System infrastructure policy and planning discussions. To date, there have been no proposed relationships for impact speeds above which humans are likely to sustain fatal or serious (severe) injury, a more relevant Safe System measure. A research project on Safe System intersection design required a critical review of published literature on the relationship between impact speed and probability of injury. This has led to a number of questions being raised about the origins, accuracy and appropriateness of the currently accepted impact speed–fatality probability relationships (Wramborg 2005) in many policy documents. The literature review identified alternative, more recent and more precise relationships derived from the US crash reconstruction databases (NASS/CDS). The paper proposes for discussion a set of alternative relationships between vehicle impact speed and probability of MAIS3+ (fatal and serious) injury for selected common crash types. Proposed Safe System critical impact speed values are also proposed for use in road infrastructure assessment. The paper presents the methodology and assumptions used in developing these relationships. It identifies further research needed to confirm and refine these relationships. Such relationships would form valuable inputs into future road safety policies in Australia and New Zealand.
Resumo:
This paper proposes a multilevel inverter which produces hexagonal voltage space vector structure in lower modulation region and a 12-sided polygonal space vector structure in the over-modulation region. Normal conventional multilevel inverter produces 6n +/- 1 (n=odd) harmonics in the phase voltage during over-modulation and in the extreme square wave mode operation. However, this inverter produces a 12-sided polygonal space vector location leading to the elimination of 6n 1 (n=odd) harmonics in over-modulation region extending to a final 12-step mode operation. The inverter consists of three conventional cascaded two level inverters with asymmetric dc bus voltages. The switching frequency of individual inverters is kept low throughout the modulation index. In the low speed region, hexagonal space phasor based PWM scheme and in the higher modulation region, 12-sided polygonal voltage space vector structure is used. Experimental results presented in this paper shows that the proposed converter is suitable for high power applications because of low harmonic distortion and low switching losses.
Resumo:
This report describes a methodology for the design and coupling of a proton exchange membrane (PEM) Fuel Cell to an Unmanned Aerial Vehicle (UAV). The report summarizes existing work in the field, the type of UAV and the mission requirements, design the fuel cell system, simulation environment, and compares endurance and range to when the aircraft is fitted with a conventional internal combustion engine (ICE).
Resumo:
In this paper, a novel 12-sided polygonal space vector structure is proposed for an induction motor drive. The space vector pattern presented in this paper consists of two 12-sided concentric polygons with the outer polygon having a radius double the inner one. As compared to previously reported 12-sided polygonal space vector structures, this paper subdivides the space vector plane into smaller sized triangles. This helps in reducing the switching frequency of the inverters without deteriorating the output voltage quality. It also reduces the device ratings and dv/dt stress on the devices to half. At the same time, other benefits obtained from the existing 12-sided space vector structure, such as increased linear modulation range and complete elimination of 5th and 7th order harmonics in the phase voltage, are also retained in this paper. The space vector structure is realized by feeding an open-end induction motor with two conventional three-level neutral point clamped (NPC) inverters with asymmetric isolated dc link voltage sources. The neutral point voltage fluctuations in the three-level NPC inverters are eliminated by utilizing the switching state multiplicities for a space vector point. The pulsewidth modulation timings are calculated using sampled reference waveform amplitudes and are explained in detail in this paper. Experimental verification on a laboratory prototype shows that this configuration may be considered suitable for high power drives.