964 resultados para Modèle Objet
Resumo:
Ancien possesseur : Gilles, Albert (1873-1959)
Resumo:
Ancien possesseur : Gilles, Albert (1873-1959)
Resumo:
Ancien possesseur : Gilles, Albert (1873-1959)
Resumo:
Ancien possesseur : Gilles, Albert (1873-1959)
Resumo:
Guide des collections et services offerts par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Communication présentée dans le cadre du programme de formation continue de la Corporation des bibliothécaires professionnels du Québec, vendredi le 11 mars 2005.
Resumo:
Il existe une méthodologie de la recherche de l'information spécialisée au même titre que des méthodologies de recherche des différentes disciplines. Cette méthodologie implique d'identifier clairement son objet de recherche et le vocabulaire qui le caractérise, d'utiliser les sources adéquates de recherche dans un ordre logique, de connaître les critères d'évaluation critique de la qualité de l'information et de confronter ses résultats à l'expérience de la vie de tous les jours.
Resumo:
Conférence-midi prononcée à la Direction des bibliothèques le 17 mars 2005.
Resumo:
Latent variable models in finance originate both from asset pricing theory and time series analysis. These two strands of literature appeal to two different concepts of latent structures, which are both useful to reduce the dimension of a statistical model specified for a multivariate time series of asset prices. In the CAPM or APT beta pricing models, the dimension reduction is cross-sectional in nature, while in time-series state-space models, dimension is reduced longitudinally by assuming conditional independence between consecutive returns, given a small number of state variables. In this paper, we use the concept of Stochastic Discount Factor (SDF) or pricing kernel as a unifying principle to integrate these two concepts of latent variables. Beta pricing relations amount to characterize the factors as a basis of a vectorial space for the SDF. The coefficients of the SDF with respect to the factors are specified as deterministic functions of some state variables which summarize their dynamics. In beta pricing models, it is often said that only the factorial risk is compensated since the remaining idiosyncratic risk is diversifiable. Implicitly, this argument can be interpreted as a conditional cross-sectional factor structure, that is, a conditional independence between contemporaneous returns of a large number of assets, given a small number of factors, like in standard Factor Analysis. We provide this unifying analysis in the context of conditional equilibrium beta pricing as well as asset pricing with stochastic volatility, stochastic interest rates and other state variables. We address the general issue of econometric specifications of dynamic asset pricing models, which cover the modern literature on conditionally heteroskedastic factor models as well as equilibrium-based asset pricing models with an intertemporal specification of preferences and market fundamentals. We interpret various instantaneous causality relationships between state variables and market fundamentals as leverage effects and discuss their central role relative to the validity of standard CAPM-like stock pricing and preference-free option pricing.
Resumo:
L’objectif de ce papier est de déterminer les facteurs susceptibles d’expliquer les faillites bancaires au sein de l’Union économique et monétaire ouest-africaine (UEMOA) entre 1980 et 1995. Utilisant le modèle logit conditionnel sur des données en panel, nos résultats montrent que les variables qui affectent positivement la probabilité de faire faillite des banques sont : i) le niveau d’endettement auprès de la banque centrale; ii) un faible niveau de comptes disponibles et à vue; iii) les portefeuilles d’effets commerciaux par rapport au total des crédits; iv) le faible montant des dépôts à terme de plus de 2 ans à 10 ans par rapport aux actifs totaux; et v) le ratio actifs liquides sur actifs totaux. En revanche, les variables qui contribuent positivement sur la vraisemblance de survie des banques sont les suivantes : i) le ratio capital sur actifs totaux; ii) les bénéfices nets par rapport aux actifs totaux; iii) le ratio crédit total sur actifs totaux; iv) les dépôts à terme à 2 ans par rapport aux actifs totaux; et v) le niveau des engagements sous forme de cautions et avals par rapport aux actifs totaux. Les ratios portefeuilles d’effets commerciaux et actifs liquides par rapport aux actifs totaux sont les variables qui expliquent la faillite des banques commerciales, alors que ce sont les dépôts à terme de plus de 2 ans à 10 ans qui sont à l’origine des faillites des banques de développement. Ces faillites ont été considérablement réduites par la création en 1989 de la commission de réglementation bancaire régionale. Dans l’UEMOA, seule la variable affectée au Sénégal semble contribuer positivement sur la probabilité de faire faillite.
Resumo:
This paper studies seemingly unrelated linear models with integrated regressors and stationary errors. By adding leads and lags of the first differences of the regressors and estimating this augmented dynamic regression model by feasible generalized least squares using the long-run covariance matrix, we obtain an efficient estimator of the cointegrating vector that has a limiting mixed normal distribution. Simulation results suggest that this new estimator compares favorably with others already proposed in the literature. We apply these new estimators to the testing of purchasing power parity (PPP) among the G-7 countries. The test based on the efficient estimates rejects the PPP hypothesis for most countries.
Resumo:
This paper examines the implications of intergenerational transfers of time and money for labor supply and capital accumulation. Although intergenerational transfers of time in the form of grandparenting are as substantial as monetary transfers in the data, little is known about the role and importance of time transfers. In this paper, we calibrate an overlapping generations model extended to allow for both time and monetary transfers to the US economy. We use simulations to show that time transfers have important positive effects on capital accumulation and that these effects can be as significant as those of monetary transfers. However, while time transfers increase the labor supply of the young, monetary transfers produce an income effect that tends to decrease work effort. We also find that child care tax credits have little impact on parental time and money transfers, but that a universal child tax credit would increase the welfare of the rich while the poor would benefit from a means-tested program.
Resumo:
Multi-country models have not been very successful in replicating important features of the international transmission of business cycles. Standard models predict cross-country correlations of output and consumption which are respectively too low and too high. In this paper, we build a multi-country model of the business cycle with multiple sectors in order to analyze the role of sectoral shocks in the international transmission of the business cycle. We find that a model with multiple sectors generates a higher cross-country correlation of output than standard one-sector models, and a lower cross-country correlation of consumption. In addition, it predicts cross-country correlations of employment and investment that are closer to the data than the standard model. We also analyze the relative effects of multiple sectors, trade in intermediate goods, imperfect substitution between domestic and foreign goods, home preference, capital adjustment costs, and capital depreciation on the international transmission of the business cycle.
Resumo:
In the context of multivariate linear regression (MLR) models, it is well known that commonly employed asymptotic test criteria are seriously biased towards overrejection. In this paper, we propose a general method for constructing exact tests of possibly nonlinear hypotheses on the coefficients of MLR systems. For the case of uniform linear hypotheses, we present exact distributional invariance results concerning several standard test criteria. These include Wilks' likelihood ratio (LR) criterion as well as trace and maximum root criteria. The normality assumption is not necessary for most of the results to hold. Implications for inference are two-fold. First, invariance to nuisance parameters entails that the technique of Monte Carlo tests can be applied on all these statistics to obtain exact tests of uniform linear hypotheses. Second, the invariance property of the latter statistic is exploited to derive general nuisance-parameter-free bounds on the distribution of the LR statistic for arbitrary hypotheses. Even though it may be difficult to compute these bounds analytically, they can easily be simulated, hence yielding exact bounds Monte Carlo tests. Illustrative simulation experiments show that the bounds are sufficiently tight to provide conclusive results with a high probability. Our findings illustrate the value of the bounds as a tool to be used in conjunction with more traditional simulation-based test methods (e.g., the parametric bootstrap) which may be applied when the bounds are not conclusive.
Resumo:
In this paper, we develop finite-sample inference procedures for stationary and nonstationary autoregressive (AR) models. The method is based on special properties of Markov processes and a split-sample technique. The results on Markovian processes (intercalary independence and truncation) only require the existence of conditional densities. They are proved for possibly nonstationary and/or non-Gaussian multivariate Markov processes. In the context of a linear regression model with AR(1) errors, we show how these results can be used to simplify the distributional properties of the model by conditioning a subset of the data on the remaining observations. This transformation leads to a new model which has the form of a two-sided autoregression to which standard classical linear regression inference techniques can be applied. We show how to derive tests and confidence sets for the mean and/or autoregressive parameters of the model. We also develop a test on the order of an autoregression. We show that a combination of subsample-based inferences can improve the performance of the procedure. An application to U.S. domestic investment data illustrates the method.