974 resultados para Merits and Defects of Technology
Resumo:
Advent of lasers together with the advancement in fiber optics technology has revolutionized the sensor technology. Advancement in the telemetric applications of optical fiber based measurements is an added bonus. The present thesis describes variety of fiber based sensors using techniques like micro bending, long period grating and evanescent waves. Sensors to measure various physical and chemical parameters are described in this thesis.
Resumo:
Department of Elecctronics, Cochin University of Science and Technology
Resumo:
Department of Physics, Cochin University of Science and Technology
Resumo:
Department of Physics, Cochin University of Science and Technology
Resumo:
Department of Physics, Cochin University of Science and Technology
Resumo:
Photosciences & Photonics, Chemical Sciences & Technology Division, National Institute for Interdisciplinary Science & Technology
Resumo:
The thesis is the outcome of the experimental and theoretical investigations on a new compact drum-shaped microstrip antenna. A new compact antenna suitable for personal communication system(PCS), Global position System(GPS) and array applications is developed and analysed. The generalised cavity model and spatial fourier transform technique are suitably modified for the analysis of the antenna. The predicted results are compared with experimental results and excellent agreement is observed. The experimental work done by the author in related fields are incorporated as three appendices in this thesis. A single feed dual frequency microstrip antenne is presented in appendix A.Appendix B describes a new broadband dual frequeny microstrip antenna. The bandwidth enhancement effect of microstrip antennas through dielectric resonator loading is demonstarted in Appendix C.
Resumo:
The thesis explores the outcome of the exhaustive theoretical and experimental investigations performed on Octagonal Microstrip Antenna configurations. Development of the MATLAB TM backed 3D-Conformal Finite Difference Time Domain (CFDTD)Modeller for the numerical computation of the radiation characteristics of the antenna is the theme of the work. The predicted results are verified experimentally and by IE3D TM simulation. The influence of the patch dimensions,feed configurations,feed dimensions and feed positions upon the radiation performance of the antenna is studied in detail. Octagonal Microstrip Antenna configurations suitable for Mobile-Bluetooth application is dealt in detail. A simple design formula for the regular Octagonal geometry is also presented. A compact planar multi band antenna for GPS/DCS/2.4/5.8GHz WLAN application is included as appendix A. Planar near field measurement technique is explained in appendix B.
Resumo:
In this work polymers belonging to polyaniline and polyaniline doped with camphor sulphonic acid are synthesised. Cobalt phthalocyanine is an interesting candidate belonging to the tetramers. Studies on the composites containing cobalt phthalocyanine tetramer and polyaniline doped with camphor sulphonic acid for various concentration are also undertaken in order to understand the mechanism. RF plasma polymerised aniline and furfural are prepared. The structural and electrical properties are evaluated. The bombardment of swift heavy ions of these films are carried out and the effect of irradiation on their properties is also investigated.
Resumo:
Chemically modified novel thermo-reversible zinc sulphonated ionomers based on natural rubber (NR), radiation induced styrene grafted natural rubber (RI-SGNR), and chemically induced styrene grafted natural rubber (CI-SGNR) were synthesized using acetyl sulphate/zinc acetate reagent system. Evidence for the attachment of sulphonate groups has been furnished by FTIR spectra. which was supplanted by FTNMR results. Estimation of the zinc sulphonate group was done using spectroscopic techniques such as XRFS and ICPAES. The TGA results prove improvement in the therrno-oxidative stability of the modified natural rubber. Both DSC and DMTA studies show that the incorporation of the ionic groups affect the thermal transition of the base polymer. Retention of the improved physical properties of the novel ionomers even after three repeated cycles of mastication and molding at 120 degree C may be considered as the evidence for the reprocessabiJity of the ionomer. Effect of both particulate (carbon black. silica & zinc stearate) and fibrous fillers (nylon & glass) on the properties of the radiation induced styrene grafted natural rubber ionomer has been evaluated. Incorporation of HAF carbon black results in maximum improvement in physical properties. Silica reinforces the backbone chain and weakens the ionic associations. Zinc stearate plays the dual role of reinforcement and ptasticization. The nylon and glass filled lonorner compounds show good improvement in the physical properties in comparison with the neat ionomer. Dispersion and adhesion of the fillers in the ionomer matrix has been amply supported by their SEM micrographs. Microwave probing of the electrical behavior of the 26.5 ZnSRISGNR ionomer reveals that the maximum relative complex conductivity and the complex permittivity appear at the frequency of 2.6 GHz. The complex conductivity of the base polymer increases from 1.8x 10.12 S/cm to 3.3xlO·4 S/cm. Influence of fillers on the dielectric constant and conductivity of the new ionic thermoplastic elastomer has been studied. The ionomer I nylon compound shows the highest microwave conductivity. Use of the 26.5 ZnS-RISGNR ionomer as a compatibilizer for obtaining the technologically compatible blends from the immiscible SBR/NBR system has been verified. The heat fugitive ionic cross-linked natural rubber may be, therefore, useful as an alternative to vulcanized rubber and thermoplastic elastomer
Resumo:
Department of Polymer Science and Rubber Technology,Cochin University of Science and Technology
Resumo:
The catalyst compositions of the Zn1−xCOxFe2O4 (x= 0, 0.2, 0.5, 0.8 and 1.0) spiel series possessing ‘x’ values, x less than or equal to 0.5, are unique for selective N-monomethylation of aniline using methanol as the alkylating agent. Since dimethyl carbonate (DMC) is another potential non-toxic alkylating agent, alkylation of aniline was investigated over various Zn–Co ferrites using DMC as the alkylating agent. The merits and demerits of the two alkylating agents are compared. Catalytic activity followed a similar trend with respect to the composition of the ferrospinel systems. DMC is active at comparatively low temperature, where methanol shows only mild activity. However, on the selectivity basis, DMC as an alkylating agent could not compete with methanol, since the former gave appreciable amounts of N,N-dimethylaniline (NNDMA) even at low temperature where methanol gave nearly 99% N-methylaniline (NMA) selectivity. As in the case of methanol, DMC also did not give any C-alkylated products.
Resumo:
Transition metal-loaded (3%) nanocrystalline sulfated titania (ST) powders are prepared using the sol–gel technique. Anatase is found as the active phase in all the samples. Sulfate ion impregnation decreases the crystallite size and stabilizes the anatase phase of TiO2. Acidity of the samples is found to increase by the incorporation of sulfate ion and also by the modification by transition metal ions. All the prepared catalysts are found stable up to 700 °C.
Resumo:
Glucoamylase was immobilized on acid activated montmorillonite clay via two different procedures namely adsorption and covalent binding. The immobilized enzymes were characterized by XRD, NMR and N2 adsorption measurements and the activity of immobilized glucoamylase for starch hydrolysis was determined in a batch reactor. XRD shows intercalation of enzyme into the clay matrix during both immobilization procedures. Intercalation occurs via the side chains of the amino acid residues, the entire polypeptide backbone being situated at the periphery of the clay matrix. 27Al NMR studies revealed the different nature of interaction of enzyme with the support for both immobilization techniques. N2 adsorption measurements indicated a sharp drop in surface area and pore volume for the covalently bound glucoamylase that suggested severe pore blockage. Activity studies were performed in a batch reactor. The adsorbed and covalently bound glucoamylase retained 49% and 66% activity of the free enzyme respectively. They showed enhanced pH and thermal stabilities. The immobilized enzymes also followed Michaelis–Menten kinetics. Km was greater than the free enzyme that was attributed to an effect of immobilization. The immobilized preparations demonstrated increased reusability as well as storage stability.