912 resultados para Medical Image Processing
Resumo:
The absolute necessity of obtaining 3D information of structured and unknown environments in autonomous navigation reduce considerably the set of sensors that can be used. The necessity to know, at each time, the position of the mobile robot with respect to the scene is indispensable. Furthermore, this information must be obtained in the least computing time. Stereo vision is an attractive and widely used method, but, it is rather limited to make fast 3D surface maps, due to the correspondence problem. The spatial and temporal correspondence among images can be alleviated using a method based on structured light. This relationship can be directly found codifying the projected light; then each imaged region of the projected pattern carries the needed information to solve the correspondence problem. We present the most significant techniques, used in recent years, concerning the coded structured light method
Resumo:
This paper presents a novel technique to align partial 3D reconstructions of the seabed acquired by a stereo camera mounted on an autonomous underwater vehicle. Vehicle localization and seabed mapping is performed simultaneously by means of an Extended Kalman Filter. Passive landmarks are detected on the images and characterized considering 2D and 3D features. Landmarks are re-observed while the robot is navigating and data association becomes easier but robust. Once the survey is completed, vehicle trajectory is smoothed by a Rauch-Tung-Striebel filter obtaining an even better alignment of the 3D views and yet a large-scale acquisition of the seabed
Resumo:
A visual SLAM system has been implemented and optimised for real-time deployment on an AUV equipped with calibrated stereo cameras. The system incorporates a novel approach to landmark description in which landmarks are local sub maps that consist of a cloud of 3D points and their associated SIFT/SURF descriptors. Landmarks are also sparsely distributed which simplifies and accelerates data association and map updates. In addition to landmark-based localisation the system utilises visual odometry to estimate the pose of the vehicle in 6 degrees of freedom by identifying temporal matches between consecutive local sub maps and computing the motion. Both the extended Kalman filter and unscented Kalman filter have been considered for filtering the observations. The output of the filter is also smoothed using the Rauch-Tung-Striebel (RTS) method to obtain a better alignment of the sequence of local sub maps and to deliver a large-scale 3D acquisition of the surveyed area. Synthetic experiments have been performed using a simulation environment in which ray tracing is used to generate synthetic images for the stereo system
Resumo:
In this paper a novel rank estimation technique for trajectories motion segmentation within the Local Subspace Affinity (LSA) framework is presented. This technique, called Enhanced Model Selection (EMS), is based on the relationship between the estimated rank of the trajectory matrix and the affinity matrix built by LSA. The results on synthetic and real data show that without any a priori knowledge, EMS automatically provides an accurate and robust rank estimation, improving the accuracy of the final motion segmentation
Resumo:
A novel technique for estimating the rank of the trajectory matrix in the local subspace affinity (LSA) motion segmentation framework is presented. This new rank estimation is based on the relationship between the estimated rank of the trajectory matrix and the affinity matrix built with LSA. The result is an enhanced model selection technique for trajectory matrix rank estimation by which it is possible to automate LSA, without requiring any a priori knowledge, and to improve the final segmentation
Resumo:
Actualment, en l'àmbit mèdic, la ressonància magnètica, MRI Magnetic Resonance Imaging, és un dels sistemes més utilitzats per a la realització de diagnòstics i el seguiment de l'evolució de malalties com l'esclerosi múltiple (EM). No obstant, la gran quantitat d'informació que proporciona aquesta modalitat té com a conseqüència una tasca feixuga d'anàlisi i d'interpretació per part dels radiòlegs i neuròlegs. L'objectiu general d'aquest projecte és desenvolupar un sistema per ajudar als metges a segmentar les imatges de MRI del cervell. S'ha implementat amb MATLAB. Durant tot el procés s'han utilitzat dades sintètiques, de la base de dades simulada BrainWeb, i reals, proporcionades pels grup de metges col•laboradors amb el grup VICOROB. El projecte s'emmarca dins d'un projecte de recerca del grup de Visió per Computador i Robòtica de la Universitat de Girona
Resumo:
L’objectiu d’aquest projecte és integrar a la plataforma Starviewer ( plataforma informàtica de processament i visualització d’imatges mèdiques creada fruit de la col•laboració del Laboratori de Gràfics i Imatge (GILab) de la Universitat de Girona i l’Institut de Diagnòstic per la Imatge (IDI) de l’hospital Dr. Josep Trueta de Girona) per donar suport al diagnòstic un entorn de suport a la inserció de pròtesis, que permeti automatitzar al màxim les operacions que actualment es realitzen de forma manual. Hem de tenir en compte que, tot i que, la imatge més usada pel radiòleg es la radiografia (Rx) també treballa amb tomografia computada (TAC). El TAC dona una visió 3D de l’organisme, mentre que la Rx és 2D
Resumo:
Desenvolupament una aplicació informàtica basada en un sistema de visió per computador, la qual permeti donar una resposta en forma d'informació a partir d'una query d'una imatge que conté una escena o objecte en concret de manera que permeti reconèixer els objectes que apareixen en una imatge per llavors donar informació referent al contingut de la imatge a l’usuari que ha fet la consulta. Resumint, es tracta d’analitzar, dissenyar i construir un sistema de visió per computador capaç de reconèixer objectes d’interès en imatges
Resumo:
L’objectiu d’aquest projecte és ampliar la plataforma Starviewer integrant els mòduls necessaris per donar suport al diagnòstic de l’estenosi de caròtida permetent interpretar de forma més fàcil les imatges Angiografia per Ressonància Magnètica (ARM). La plataforma Starviewer és un entorn informàtic que integra funcionalitats bàsiques i avançades pel processament i la visualització d’imatges mèdiques. Està desenvolupat pel Grup d’Informàtica Gràfica de la Universitat de Girona i l’Institut de Diagnòstic per la Imatge (IDI) de l’hospital Dr. Josep Trueta. Una de les limitacions de la plataforma és el no suportar el tractament de lesions del sistema vascular. Per això ens proposem a corregir-ho i ampliar les seves extensions per a poder diagnosticar l’estenosi de caròtida
Resumo:
L’objectiu d’aquest projecte es dissenyar i implementar un entorn de suport al diagnòstic dels aneurismes. Aquest entorn s’haurà d’integrar en la plataforma Starviewer. La plataforma Starviewer és un entorn de processament i visualització de dades mèdiques desenvolupat conjuntament entre el Laboratori de Gràfics i Imatge de la UdG i l’ Institut de Diagnòstic per la Imatge de l’Hospital Josep Trueta de Girona. Aquesta plataforma ofereix les funcionalitats bàsiques per diagnosticar a partir d’imatges. Tot i les funcionalitats de la plataforma, en la versió actual no es suporta el processament avançat d’imatge d’angiografia. En aquest projecte ens proposem ampliar aquesta plataforma integrant els mòduls necessaris que permetin el processament d’angiografies usades en el diagnòstic dels aneurismes
Resumo:
La patología de la válvula mitral tiene gran prevalencia dentro de la enfermedad cardiaca. Con nuevas técnicas diagnósticas se perfecciona la caracterización de la válvula mitral y la ecocardiografía tridimensional tras esofágica, ha permitido obtener mejor información acerca de la patología valvular mitral. Objetivo principal : describir estructural y anatómicamente la válvula mitral, sus medidas y relaciones espaciales tridimensionales, en pacientes catalogados con válvula normal comparándolos con pacientes con insuficiencia mitral; en estudios realizados mediante ecocardiografía tras esofágica tridimensional. Materiales y métodos : estudio descriptivo, prospectivo con una serie de casos de válvulas mitrales normales comparadas con insuficientes : Obtención - Imagen tras esofágica 3D en tiempo real - Análisis y procesamiento de la imagen - Reconstrucción Tridimensional. Obtención de las diferentes medidas anatómicas estructurales que servirán para la tipificación de la válvula mitral en 3D. Análisis descriptivo : se utilizarán distribuciones de frecuencia y distribuciones porcentuales y en las variables de tipo cuantitativo medidas de tendencia central y medidas de variabilidad y dispersión. Resultados : se evaluaron durante el periodo de tiempo comprendido entre junio de 2008 y agosto de 2009 un total de 113 pacientes en total, encontrando claras diferencias en la estructura de las insuficiencias por prolapso. No hubo diferenciación en las cardiopatía isquémica vs dilatada. Conclusión : en el prolapso mitral aporta datos en la identificación etiológica ya sea degenerativa fibroelástica o enfermedad de Barlow. No hay diferencia significativa en la estructura que ayude caracterizar cardiopatía isquémica vs cardiopatía dilatada.
Resumo:
El càncer de pell es considera un dels tipus de càncer més freqüents actualment, entre d'altres factors degut a l'augment en l'exposició a la radiació ultraviolada (UV). Recentment la utilització de la Microscòpia Confocal (MCF) per a l'avaluació i diagnosi del càncer de pell ha rebut un important interès. El principal avantatge és la capacitat de visualitzar en temps real la regió d'interès a nivell cel·lular, similar a la informació obtinguda en una biòpsia, sense el patiment que suposa per al pacient. El principal inconvenient però, és que les imatges obtingudes amb MCF són difícils d'interpretar per als metges en el format actual (conjunt de talls 2D a diferents profunditats de la pell). El microscopi confocal és una de les tècniques més actuals de diagnòstic, i s'ha establert com a una eina per obtenir imatges d'alta resolució i reconstruccions 3-D d'una gran varietat de mostres biològiques. És capaç d'escombrar diferents plans en l'eix Z, obtenint imatges 2D de diferent profunditat juntament amb la informació dels paràmetres de captura (com ara la profunditat, potència del làser, posicionament en x,y,z, etc). Mitjançant eines informàtiques es pot integrar aquesta informació en un model 3D de la regió d'interès. L'objectiu principal d'aquest projecte és el desenvolupament d'una eina per a l'ajuda en la interpretació de les imatges MCF i així poder millorar el diagnosi del càncer de pell
Resumo:
El processament de dades cardíaques és, sinó el que més, un dels més complexes de tractar. El problema principal és que a diferència d’altres parts de l’organisme, el cor del pacient està en moviment continu. Aquest moviment queda representat en les imatges generades pels aparells de captació en forma de soroll. Aquest soroll no només dificulta la detecció de les patologies per part dels cardiòlegs i els especialistes sinó que també en moltes ocasions limita l’aplicació de certes tècniques i mètodes. Així per exemple, l’aplicació de mètodes de visualització 3D (mètodes que permeten generar una representació 3D d’un òrgan) que poden aplicar-se fàcilment en visualització de dades del cervell no són aplicables sobre dades de cor. El Grup d’Informàtica Gràfica de la Universitat de Girona, juntament amb l’Institut de Diagnòstic per la Imatge (IDI) de l'hospital Dr. Josep Trueta, està col·laborant en el desenvolupament de noves eines informàtiques que donin suport al diagnòstic. Una de les prioritats actuals de l'IDI és el tractament de malalties cardíaques. Es disposa d’una plataforma anomenada Starviewer que integra les operacions bàsiques de manipulació i visualització de dades mèdiques. L’objectiu d’aquest projecte és el de desenvolupar i integrar en la plataforma Starviewer els mòduls necessaris per poder tractar, manipular i visualitzar dades cardíaques provinents de ressònancies magnètiques
Resumo:
La visualització científica estudia i defineix algorismes i estructures de dades que permeten fer comprensibles conjunts de dades a través d’imatges. En el cas de les aplicacions mèdiques les dades que cal interpretar provenen de diferents dispositius de captació i es representen en un model de vòxels. La utilitat d’aquest model de vòxels depèn de poder-lo veure des del punt de vista ideal, és a dir el que aporti més informació. D’altra banda, existeix la tècnica dels Miralls Màgics que permet veure el model de vòxels des de diferents punts de vista alhora i mostrant diferents valors de propietat a cada mirall. En aquest projecte implementarem un algorisme que permetrà determinar el punt de vista ideal per visualitzar un model de vòxels així com també els punts de vista ideals per als miralls per tal d’aconseguir el màxim d’informació possible del model de vòxels. Aquest algorisme es basa en la teoria de la informació per saber quina és la millor visualització. L’algorisme també permetrà determinar l’assignació de colors òptima per al model de vòxels
Resumo:
La visió és probablement el nostre sentit més dominant a partir del qual derivem la majoria d'informació del món que ens envolta. A través de la visió podem percebre com són les coses, on són i com es mouen. En les imatges que percebem amb el nostre sistema de visió podem extreure'n característiques com el color, la textura i la forma, i gràcies a aquesta informació som capaços de reconèixer objectes fins i tot quan s'observen sota unes condicions totalment diferents. Per exemple, som capaços de distingir un mateix objecte si l'observem des de diferents punts de vista, distància, condicions d'il·luminació, etc. La Visió per Computador intenta emular el sistema de visió humà mitjançant un sistema de captura d'imatges, un ordinador, i un conjunt de programes. L'objectiu desitjat no és altre que desenvolupar un sistema que pugui entendre una imatge d'una manera similar com ho realitzaria una persona. Aquesta tesi es centra en l'anàlisi de la textura per tal de realitzar el reconeixement de superfícies. La motivació principal és resoldre el problema de la classificació de superfícies texturades quan han estat capturades sota diferents condicions, com ara distància de la càmera o direcció de la il·luminació. D'aquesta forma s'aconsegueix reduir els errors de classificació provocats per aquests canvis en les condicions de captura. En aquest treball es presenta detalladament un sistema de reconeixement de textures que ens permet classificar imatges de diferents superfícies capturades en diferents condicions. El sistema proposat es basa en un model 3D de la superfície (que inclou informació de color i forma) obtingut mitjançant la tècnica coneguda com a 4-Source Colour Photometric Stereo (CPS). Aquesta informació és utilitzada posteriorment per un mètode de predicció de textures amb l'objectiu de generar noves imatges 2D de les textures sota unes noves condicions. Aquestes imatges virtuals que es generen seran la base del nostre sistema de reconeixement, ja que seran utilitzades com a models de referència per al nostre classificador de textures. El sistema de reconeixement proposat combina les Matrius de Co-ocurrència per a l'extracció de característiques de textura, amb la utilització del Classificador del veí més proper. Aquest classificador ens permet al mateix temps aproximar la direcció d'il·luminació present en les imatges que s'utilitzen per testejar el sistema de reconeixement. És a dir, serem capaços de predir l'angle d'il·luminació sota el qual han estat capturades les imatges de test. Els resultats obtinguts en els diferents experiments que s'han realitzat demostren la viabilitat del sistema de predicció de textures, així com del sistema de reconeixement.