945 resultados para Mean Squared Error
Resumo:
A avaliação do coeficiente de variação (CV) como medida da precisão dos experimentos tem sido feita com diversas culturas, espécies animais e forrageiras por meio de trabalhos sugerindo faixas de classificação dos valores, considerando-se a média, o desvio padrão e a distribuição dos valores de CV das diversas variáveis respostas envolvidas nos experimentos. Neste trabalho, objetivouse estudar a distribuição dos valores de CV de experimentos com a cultura do feijão, propondo faixas que orientem os pesquisadores na avaliação de seus estudos com cada variável. Os dados utilizados foram obtidos de revisão em revistas que publicam artigos científicos com a cultura do feijão. Foram consideradas as variáveis: rendimento, número de vagens por planta, número de grãos por vagem, peso de 100 grãos, estande final, altura de plantas e índice de colheita. Foram obtidas faixas de valores de CV para cada variável tomando como base a distribuição normal, utilizando-se também a distribuição dos quantis amostrais e a mediana e o pseudo-sigma, classificando-os como baixo, médio, alto e muito alto. Os cálculos estatísticos para verificação da normalidade dos dados foram implementados por meio de uma função no software estatístico livre R. Os resultados obtidos indicaram que faixas de valores de CV diferiram entre as diversas variáveis apresentando ampla variação justificando a necessidade de utilizar faixa de avaliação específica para cada variável.
Resumo:
O objetivo foi avaliar a acurácia, precisão e robustez das estimativas da digestibilidade aparente da matéria seca obtidas utilizando-se como indicadores fibra em detergente ácido indigestível (FDAi), fibra em detergente neutro (FDNi) indigestível, lignina em detergente ácido (LDA), LDA indigestível (LDAi) e óxido crômico em comparação ao método de coleta total de fezes. Dezoito ovinos (56,5 ± 4,6 kg PV) foram designados aleatoriamente a dietas compostas de 25, 50 ou 75% de concentrado e feno de Coast cross por 25 dias. As fezes foram coletadas por cinco dias para determinação da digestibilidade aparente da MS. As amostras de alimentos e fezes foram incubadas no rúmen de três bovinos por 144 horas, para obtenção das frações indigestíveis. Óxido crômico foi administrado a 4,0 g/animal/dia. A acurácia foi avaliada pela comparação do viés médio (DAMS predito - DAMS observado) entre os indicadores; a precisão, por meio da raiz quadrada do erro de predição e do erro residual; e a robustez, pelo estudo da regressão entre o viés e o consumo de matéria seca, o nível de concentrado e o peso vivo. A recuperação fecal e a acurácia das estimativas da digestibilidade aparente da MS foram maiores para FDAi, seguida pela FDNi, LDAi, pelo óxido crômico e depois pela lignina em detergente ácido. O viés linear foi significativo apenas para FDAi, FDNi e LDAi. O uso de óxido crômico permitiu estimativas mais precisas da digestibilidade aparente da MS. Todos os indicadores foram robustos quanto à variação no consumo de matéria seca e apenas LDAi e óxido crômico foram robustos quanto aos níveis de concentrado na dieta. O óxido crômico não foi robusto quando houve variação no peso vivo animal. Assim, a FDAi é o indicador mais recomendado na estimativa da digestibilidade aparente da MS em ovinos quando o objetivo é comparar aos dados da literatura, enquanto o óxido crômico é mais recomendado quando o objetivo é comparar tratamentos dentro de um mesmo experimento.
Resumo:
Consider a random medium consisting of N points randomly distributed so that there is no correlation among the distances separating them. This is the random link model, which is the high dimensionality limit (mean-field approximation) for the Euclidean random point structure. In the random link model, at discrete time steps, a walker moves to the nearest point, which has not been visited in the last mu steps (memory), producing a deterministic partially self-avoiding walk (the tourist walk). We have analytically obtained the distribution of the number n of points explored by the walker with memory mu=2, as well as the transient and period joint distribution. This result enables us to explain the abrupt change in the exploratory behavior between the cases mu=1 (memoryless walker, driven by extreme value statistics) and mu=2 (walker with memory, driven by combinatorial statistics). In the mu=1 case, the mean newly visited points in the thermodynamic limit (N >> 1) is just < n >=e=2.72... while in the mu=2 case, the mean number < n > of visited points grows proportionally to N(1/2). Also, this result allows us to establish an equivalence between the random link model with mu=2 and random map (uncorrelated back and forth distances) with mu=0 and the abrupt change between the probabilities for null transient time and subsequent ones.
Resumo:
Background: Genome wide association studies (GWAS) are becoming the approach of choice to identify genetic determinants of complex phenotypes and common diseases. The astonishing amount of generated data and the use of distinct genotyping platforms with variable genomic coverage are still analytical challenges. Imputation algorithms combine directly genotyped markers information with haplotypic structure for the population of interest for the inference of a badly genotyped or missing marker and are considered a near zero cost approach to allow the comparison and combination of data generated in different studies. Several reports stated that imputed markers have an overall acceptable accuracy but no published report has performed a pair wise comparison of imputed and empiric association statistics of a complete set of GWAS markers. Results: In this report we identified a total of 73 imputed markers that yielded a nominally statistically significant association at P < 10(-5) for type 2 Diabetes Mellitus and compared them with results obtained based on empirical allelic frequencies. Interestingly, despite their overall high correlation, association statistics based on imputed frequencies were discordant in 35 of the 73 (47%) associated markers, considerably inflating the type I error rate of imputed markers. We comprehensively tested several quality thresholds, the haplotypic structure underlying imputed markers and the use of flanking markers as predictors of inaccurate association statistics derived from imputed markers. Conclusions: Our results suggest that association statistics from imputed markers showing specific MAF (Minor Allele Frequencies) range, located in weak linkage disequilibrium blocks or strongly deviating from local patterns of association are prone to have inflated false positive association signals. The present study highlights the potential of imputation procedures and proposes simple procedures for selecting the best imputed markers for follow-up genotyping studies.
Resumo:
This paper presents a new statistical algorithm to estimate rainfall over the Amazon Basin region using the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI). The algorithm relies on empirical relationships derived for different raining-type systems between coincident measurements of surface rainfall rate and 85-GHz polarization-corrected brightness temperature as observed by the precipitation radar (PR) and TMI on board the TRMM satellite. The scheme includes rain/no-rain area delineation (screening) and system-type classification routines for rain retrieval. The algorithm is validated against independent measurements of the TRMM-PR and S-band dual-polarization Doppler radar (S-Pol) surface rainfall data for two different periods. Moreover, the performance of this rainfall estimation technique is evaluated against well-known methods, namely, the TRMM-2A12 [ the Goddard profiling algorithm (GPROF)], the Goddard scattering algorithm (GSCAT), and the National Environmental Satellite, Data, and Information Service (NESDIS) algorithms. The proposed algorithm shows a normalized bias of approximately 23% for both PR and S-Pol ground truth datasets and a mean error of 0.244 mm h(-1) ( PR) and -0.157 mm h(-1)(S-Pol). For rain volume estimates using PR as reference, a correlation coefficient of 0.939 and a normalized bias of 0.039 were found. With respect to rainfall distributions and rain area comparisons, the results showed that the formulation proposed is efficient and compatible with the physics and dynamics of the observed systems over the area of interest. The performance of the other algorithms showed that GSCAT presented low normalized bias for rain areas and rain volume [0.346 ( PR) and 0.361 (S-Pol)], and GPROF showed rainfall distribution similar to that of the PR and S-Pol but with a bimodal distribution. Last, the five algorithms were evaluated during the TRMM-Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) 1999 field campaign to verify the precipitation characteristics observed during the easterly and westerly Amazon wind flow regimes. The proposed algorithm presented a cumulative rainfall distribution similar to the observations during the easterly regime, but it underestimated for the westerly period for rainfall rates above 5 mm h(-1). NESDIS(1) overestimated for both wind regimes but presented the best westerly representation. NESDIS(2), GSCAT, and GPROF underestimated in both regimes, but GPROF was closer to the observations during the easterly flow.
Resumo:
Aims. In an earlier paper we introduced a new method for determining asteroid families where families were identified in the proper frequency domain (n, g, g + s) ( where n is the mean-motion, and g and s are the secular frequencies of the longitude of pericenter and nodes, respectively), rather than in the proper element domain (a, e, sin(i)) (semi-major axis, eccentricity, and inclination). Here we improve our techniques for reliably identifying members of families that interact with nonlinear secular resonances of argument other than g or g + s and for asteroids near or in mean-motion resonant configurations. Methods. We introduce several new distance metrics in the frequency space optimal for determining the diffusion in secular resonances of argument 2g - s, 3g - s, g - s, s, and 2s. We also regularize the dependence of the g frequency as a function of the n frequency (Vesta family) or of the eccentricity e (Hansa family). Results. Our new approaches allow us to recognize as family members objects that were lost with previous methods, while keeping the advantages of the Carruba & Michtchenko (2007, A& A, 475, 1145) approach. More important, an analysis in the frequency domain permits a deeper understanding of the dynamical evolution of asteroid families not always obtainable with an analysis in the proper element domain.
Resumo:
We present K-band spectra of newly born OB stars in the obscured Galactic giant H II region W51A and approximate to 0.8 '' angular resolution images in the J, H, and K(S)-bands. Four objects have been spectroscopically classified as O-type stars. The mean spectroscopic parallax of the four stars gives a distance of 2.0 +/- 0.3 kpc (error in the mean), significantly smaller than the radio recombination line kinematic value of 5.5 kpc or the values derived from maser proper motion observations (6-8 kpc). The number of Lyman continuum photons from the contribution of all massive stars (NLyc approximate to 1.5 x 10(50) s(-1)) is in good agreement with that inferred from radio recombination lines (NLyc = 1.3 x 10(50) s(-1)) after accounting for the smaller distance derived here. We present analysis of archival high angular resolution images (NAOS CONICA at VLT and T-ReCS at Gemini) of the compact region W51 IRS 2. The K(S)-band images resolve the infrared source IRS 2 indicating that it is a very young compact H II region. Sources IRS 2E was resolved into compact cluster (within 660 AU of projected distance) of three objects, but one of them is just bright extended emission. W51d1 and W51d2 were identified with compact clusters of three objects (maybe four in the case of W51d1) each one. Although IRS 2E is the brightest source in the K-band and at 12.6 mu m, it is not clearly associated with a radio continuum source. Our spectrum of IRS 2E shows, similar to previous work, strong emission in Br gamma and He I, as well as three forbidden emission lines of Fe III and emission lines of molecular hydrogen (H(2)) marking it as a massive young stellar object.
Resumo:
We present a new set of oscillator strengths for 142 Fe II lines in the wavelength range 4000-8000 angstrom. Our gf-values are both accurate and precise, because each multiplet was globally normalized using laboratory data ( accuracy), while the relative gf-values of individual lines within a given multiplet were obtained from theoretical calculations ( precision). Our line list was tested with the Sun and high-resolution (R approximate to 10(5)), high-S/N (approximate to 700-900) Keck+HIRES spectra of the metal-poor stars HD 148816 and HD 140283, for which line-to-line scatter (sigma) in the iron abundances from Fe II lines as low as 0.03, 0.04, and 0.05 dex are found, respectively. For these three stars the standard error in the mean iron abundance from Fe II lines is negligible (sigma(mean) <= 0.01 dex). The mean solar iron abundance obtained using our gf-values and different model atmospheres is A(Fe) = 7.45(sigma = 0.02).
Resumo:
The aim of this study was to establish a digital elevation model and its horizontal resolution to interpolate the annual air temperature for the Alagoas State by means of multiple linear regression models. A multiple linear regression model was adjusted to series (11 to 34 years) of annual air temperatures obtained from 28 weather stations in the states of Alagoas, Bahia, Pernambuco and Sergipe, in the Northeast of Brazil, in function of latitude, longitude and altitude. The elevation models SRTM and GTOPO30 were used in the analysis, with original resolutions of 90 and 900 m, respectively. The SRTM was resampled for horizontal resolutions of 125, 250, 500, 750 and 900 m. For spatializing the annual mean air temperature for the state of Alagoas, a multiple linear regression model was used for each elevation and spatial resolution on a grid of the latitude and longitude. In Alagoas, estimates based on SRTM data resulted in a standard error of estimate (0.57 degrees C) and dispersion (r(2) = 0.62) lower than those obtained from GTOPO30 (0.93 degrees C and 0.20). In terms of SRTM resolutions, no significant differences were observed between the standard error (0.55 degrees C; 750 m - 0.58 degrees C; 250m) and dispersion (0.60; 500 m - 0.65; 750 m) estimates. The spatialization of annual air temperature in Alagoas, via multiple regression models applied to SRTM data showed higher concordance than that obtained with the GTOPO30, independent of the spatial resolution.
Resumo:
The parallel mutation-selection evolutionary dynamics, in which mutation and replication are independent events, is solved exactly in the case that the Malthusian fitnesses associated to the genomes are described by the random energy model (REM) and by a ferromagnetic version of the REM. The solution method uses the mapping of the evolutionary dynamics into a quantum Ising chain in a transverse field and the Suzuki-Trotter formalism to calculate the transition probabilities between configurations at different times. We find that in the case of the REM landscape the dynamics can exhibit three distinct regimes: pure diffusion or stasis for short times, depending on the fitness of the initial configuration, and a spin-glass regime for large times. The dynamic transition between these dynamical regimes is marked by discontinuities in the mean-fitness as well as in the overlap with the initial reference sequence. The relaxation to equilibrium is described by an inverse time decay. In the ferromagnetic REM, we find in addition to these three regimes, a ferromagnetic regime where the overlap and the mean-fitness are frozen. In this case, the system relaxes to equilibrium in a finite time. The relevance of our results to information processing aspects of evolution is discussed.
Resumo:
P>Soil bulk density values are needed to convert organic carbon content to mass of organic carbon per unit area. However, field sampling and measurement of soil bulk density are labour-intensive, costly and tedious. Near-infrared reflectance spectroscopy (NIRS) is a physically non-destructive, rapid, reproducible and low-cost method that characterizes materials according to their reflectance in the near-infrared spectral region. The aim of this paper was to investigate the ability of NIRS to predict soil bulk density and to compare its performance with published pedotransfer functions. The study was carried out on a dataset of 1184 soil samples originating from a reforestation area in the Brazilian Amazon basin, and conventional soil bulk density values were obtained with metallic ""core cylinders"". The results indicate that the modified partial least squares regression used on spectral data is an alternative method for soil bulk density predictions to the published pedotransfer functions tested in this study. The NIRS method presented the closest-to-zero accuracy error (-0.002 g cm-3) and the lowest prediction error (0.13 g cm-3) and the coefficient of variation of the validation sets ranged from 8.1 to 8.9% of the mean reference values. Nevertheless, further research is required to assess the limits and specificities of the NIRS method, but it may have advantages for soil bulk density predictions, especially in environments such as the Amazon forest.
Resumo:
This research presents a method for frequency estimation in power systems using an adaptive filter based on the Least Mean Square Algorithm (LMS). In order to analyze a power system, three-phase voltages were converted into a complex signal applying the alpha beta-transform and the results were used in an adaptive filtering algorithm. Although the use of the complex LMS algorithm is described in the literature, this paper deals with some practical aspects of the algorithm implementation. In order to reduce computing time, a coefficient generator was implemented. For the algorithm validation, a computing simulation of a power system was carried Out using the ATP software. Many different situations were Simulated for the performance analysis of the proposed methodology. The results were compared to a commercial relay for validation, showing the advantages of the new method. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In this study, the innovation approach is used to estimate the measurement total error associated with power system state estimation. This is required because the power system equations are very much correlated with each other and as a consequence part of the measurements errors is masked. For that purpose an index, innovation index (II), which provides the quantity of new information a measurement contains is proposed. A critical measurement is the limit case of a measurement with low II, it has a zero II index and its error is totally masked. In other words, that measurement does not bring any innovation for the gross error test. Using the II of a measurement, the masked gross error by the state estimation is recovered; then the total gross error of that measurement is composed. Instead of the classical normalised measurement residual amplitude, the corresponding normalised composed measurement residual amplitude is used in the gross error detection and identification test, but with m degrees of freedom. The gross error processing turns out to be very simple to implement, requiring only few adaptations to the existing state estimation software. The IEEE-14 bus system is used to validate the proposed gross error detection and identification test.
Resumo:
With the relentless quest for improved performance driving ever tighter tolerances for manufacturing, machine tools are sometimes unable to meet the desired requirements. One option to improve the tolerances of machine tools is to compensate for their errors. Among all possible sources of machine tool error, thermally induced errors are, in general for newer machines, the most important. The present work demonstrates the evaluation and modelling of the behaviour of the thermal errors of a CNC cylindrical grinding machine during its warm-up period.
Resumo:
This paper deals with the traditional permutation flow shop scheduling problem with the objective of minimizing mean flowtime, therefore reducing in-process inventory. A new heuristic method is proposed for the scheduling problem solution. The proposed heuristic is compared with the best one considered in the literature. Experimental results show that the new heuristic provides better solutions regarding both the solution quality and computational effort.