991 resultados para Matrix models
Resumo:
In previous work we have applied the environmental multi-region input-output (MRIO) method proposed by Turner et al (2007) to examine the ‘CO2 trade balance’ between Scotland and the Rest of the UK. In McGregor et al (2008) we construct an interregional economy-environment input-output (IO) and social accounting matrix (SAM) framework that allows us to investigate methods of attributing responsibility for pollution generation in the UK at the regional level. This facilitates analysis of the nature and significance of environmental spillovers and the existence of an environmental ‘trade balance’ between regions. While the existence of significant data problems mean that the quantitative results of this study should be regarded as provisional, we argue that the use of such a framework allows us to begin to consider questions such as the extent to which a devolved authority like the Scottish Parliament can and should be responsible for contributing to national targets for reductions in emissions levels (e.g. the UK commitment to the Kyoto Protocol) when it is limited in the way it can control emissions, particularly with respect to changes in demand elsewhere in the UK. However, while such analysis is useful in terms of accounting for pollution flows in the single time period that the accounts relate to, it is limited when the focus is on modelling the impacts of any marginal change in activity. This is because a conventional demand-driven IO model assumes an entirely passive supply-side in the economy (i.e. all supply is infinitely elastic) and is further restricted by the assumption of universal Leontief (fixed proportions) technology implied by the use of the A and multiplier matrices. In this paper we argue that where analysis of marginal changes in activity is required, a more flexible interregional computable general equilibrium approach that models behavioural relationships in a more realistic and theory-consistent manner, is more appropriate and informative. To illustrate our analysis, we compare the results of introducing a positive demand stimulus in the UK economy using both IO and CGE interregional models of Scotland and the rest of the UK. In the case of the latter, we demonstrate how more theory consistent modelling of both demand and supply side behaviour at the regional and national levels affect model results, including the impact on the interregional CO2 ‘trade balance’.
Resumo:
As demand for electricity from renewable energy sources grows, there is increasing interest, and public and financial support, for local communities to become involved in the development of renewable energy projects. In the UK, “Community Benefit” payments are the most common financial link between renewable energy projects and local communities. These are “goodwill” payments from the project developer for the community to spend as it wishes. However, if an ownership stake in the renewable energy project were possible, receipts to the local community would potentially be considerably higher. The local economic impacts of these receipts are difficult to quantify using traditional Input-Output techniques, but can be more appropriately handled within a Social Accounting Matrix (SAM) framework where income flows between agents can be traced in detail. We use a SAM for the Shetland Islands to evaluate the potential local economic and employment impact of a large onshore wind energy project proposed for the Islands. Sensitivity analysis is used to show how the local impact varies with: the level of Community Benefit payments; the portion of intermediate inputs being sourced from within the local economy; and the level of any local community ownership of the project. By a substantial margin, local ownership confers the greatest economic impacts for the local community.
Resumo:
In this paper a Social Accounting Matrix is constructed for Libya for the year 2000. The procedure was divided into three steps. First, a macro SAM was constructed to consistently capture and represent the macroeconomic framework of the Libyan economy in 2000. Second, that macro SAM was disaggregated into a micro SAM incorporating the accounts for individual activities, primary factors and the main economic institutions. But the SAM obtained in this way was not balanced. So in thE final step we balanced the SAM using a cross-entropy procedure in General Algebraic Modelling System (GAMS). This SAM integrates national income, inputoutput, flow-of-funds, and foreign trade statistics into a comprehensive and consistent dataset. The lack of coherent time series data for Libya is a serious obstacle for applied research that uses econometric analysis. Our main intension in constructing this SAM has been one of providing benchmark data for economy-wide analysis using CGE modelling for Libya.
Resumo:
This paper does two things. First, it presents alternative approaches to the standard methods of estimating productive efficiency using a production function. It favours a parametric approach (viz. the stochastic production frontier approach) over a nonparametric approach (e.g. data envelopment analysis); and, further, one that provides a statistical explanation of efficiency, as well as an estimate of its magnitude. Second, it illustrates the favoured approach (i.e. the ‘single stage procedure’) with estimates of two models of explained inefficiency, using data from the Thai manufacturing sector, after the crisis of 1997. Technical efficiency is modelled as being dependent on capital investment in three major areas (viz. land, machinery and office appliances) where land is intended to proxy the effects of unproductive, speculative capital investment; and both machinery and office appliances are intended to proxy the effects of productive, non-speculative capital investment. The estimates from these models cast new light on the five-year long, post-1997 crisis period in Thailand, suggesting a structural shift from relatively labour intensive to relatively capital intensive production in manufactures from 1998 to 2002.
Resumo:
Until recently, much effort has been devoted to the estimation of panel data regression models without adequate attention being paid to the drivers of diffusion and interaction across cross section and spatial units. We discuss some new methodologies in this emerging area and demonstrate their use in measurement and inferences on cross section and spatial interactions. Specifically, we highlight the important distinction between spatial dependence driven by unobserved common factors and those based on a spatial weights matrix. We argue that, purely factor driven models of spatial dependence may be somewhat inadequate because of their connection with the exchangeability assumption. Limitations and potential enhancements of the existing methods are discussed, and several directions for new research are highlighted.
Resumo:
Block factor methods offer an attractive approach to forecasting with many predictors. These extract the information in these predictors into factors reflecting different blocks of variables (e.g. a price block, a housing block, a financial block, etc.). However, a forecasting model which simply includes all blocks as predictors risks being over-parameterized. Thus, it is desirable to use a methodology which allows for different parsimonious forecasting models to hold at different points in time. In this paper, we use dynamic model averaging and dynamic model selection to achieve this goal. These methods automatically alter the weights attached to different forecasting models as evidence comes in about which has forecast well in the recent past. In an empirical study involving forecasting output growth and inflation using 139 UK monthly time series variables, we find that the set of predictors changes substantially over time. Furthermore, our results show that dynamic model averaging and model selection can greatly improve forecast performance relative to traditional forecasting methods.
Resumo:
Report for the scientific sojourn carried out at the University of New South Wales from February to June the 2007. Two different biogeochemical models are coupled to a three dimensional configuration of the Princeton Ocean Model (POM) for the Northwestern Mediterranean Sea (Ahumada and Cruzado, 2007). The first biogeochemical model (BLANES) is the three-dimensional version of the model described by Bahamon and Cruzado (2003) and computes the nitrogen fluxes through six compartments using semi-empirical descriptions of biological processes. The second biogeochemical model (BIOMEC) is the biomechanical NPZD model described in Baird et al. (2004), which uses a combination of physiological and physical descriptions to quantify the rates of planktonic interactions. Physical descriptions include, for example, the diffusion of nutrients to phytoplankton cells and the encounter rate of predators and prey. The link between physical and biogeochemical processes in both models is expressed by the advection-diffusion of the non-conservative tracers. The similarities in the mathematical formulation of the biogeochemical processes in the two models are exploited to determine the parameter set for the biomechanical model that best fits the parameter set used in the first model. Three years of integration have been carried out for each model to reach the so called perpetual year run for biogeochemical conditions. Outputs from both models are averaged monthly and then compared to remote sensing images obtained from sensor MERIS for chlorophyll.
Resumo:
This paper develops methods for Stochastic Search Variable Selection (currently popular with regression and Vector Autoregressive models) for Vector Error Correction models where there are many possible restrictions on the cointegration space. We show how this allows the researcher to begin with a single unrestricted model and either do model selection or model averaging in an automatic and computationally efficient manner. We apply our methods to a large UK macroeconomic model.
Resumo:
1. Model-based approaches have been used increasingly in conservation biology over recent years. Species presence data used for predictive species distribution modelling are abundant in natural history collections, whereas reliable absence data are sparse, most notably for vagrant species such as butterflies and snakes. As predictive methods such as generalized linear models (GLM) require absence data, various strategies have been proposed to select pseudo-absence data. However, only a few studies exist that compare different approaches to generating these pseudo-absence data. 2. Natural history collection data are usually available for long periods of time (decades or even centuries), thus allowing historical considerations. However, this historical dimension has rarely been assessed in studies of species distribution, although there is great potential for understanding current patterns, i.e. the past is the key to the present. 3. We used GLM to model the distributions of three 'target' butterfly species, Melitaea didyma, Coenonympha tullia and Maculinea teleius, in Switzerland. We developed and compared four strategies for defining pools of pseudo-absence data and applied them to natural history collection data from the last 10, 30 and 100 years. Pools included: (i) sites without target species records; (ii) sites where butterfly species other than the target species were present; (iii) sites without butterfly species but with habitat characteristics similar to those required by the target species; and (iv) a combination of the second and third strategies. Models were evaluated and compared by the total deviance explained, the maximized Kappa and the area under the curve (AUC). 4. Among the four strategies, model performance was best for strategy 3. Contrary to expectations, strategy 2 resulted in even lower model performance compared with models with pseudo-absence data simulated totally at random (strategy 1). 5. Independent of the strategy model, performance was enhanced when sites with historical species presence data were not considered as pseudo-absence data. Therefore, the combination of strategy 3 with species records from the last 100 years achieved the highest model performance. 6. Synthesis and applications. The protection of suitable habitat for species survival or reintroduction in rapidly changing landscapes is a high priority among conservationists. Model-based approaches offer planning authorities the possibility of delimiting priority areas for species detection or habitat protection. The performance of these models can be enhanced by fitting them with pseudo-absence data relying on large archives of natural history collection species presence data rather than using randomly sampled pseudo-absence data.
Resumo:
This paper develops stochastic search variable selection (SSVS) for zero-inflated count models which are commonly used in health economics. This allows for either model averaging or model selection in situations with many potential regressors. The proposed techniques are applied to a data set from Germany considering the demand for health care. A package for the free statistical software environment R is provided.
Resumo:
Background Alzheimer's disease (AD) is the leading form of dementia worldwide. The Aß-peptide is believed to be the major pathogenic compound of the disease. Since several years it is hypothesized that Aß impacts the Wnt signaling cascade and therefore activation of this signaling pathway is proposed to rescue the neurotoxic effect of Aß. Findings Expression of the human Aß42 in the Drosophila nervous system leads to a drastically shortened life span. We found that the action of Aß42 specifically in the glutamatergic motoneurons is responsible for the reduced survival. However, we find that the morphology of the glutamatergic larval neuromuscular junctions, which are widely used as the model for mammalian central nervous system synapses, is not affected by Aß42 expression. We furthermore demonstrate that genetic activation of the Wnt signal transduction pathway in the nervous system is not able to rescue the shortened life span or a rough eye phenotype in Drosophila. Conclusions Our data confirm that the life span is a useful readout of Aß42 induced neurotoxicity in Drosophila; the neuromuscular junction seems however not to be an appropriate model to study AD in flies. Additionally, our results challenge the hypothesis that Wnt signaling might be implicated in Aß42 toxicity and might serve as a drug target against AD.
Resumo:
BACKGROUND: Zebrafish is a clinically-relevant model of heart regeneration. Unlike mammals, it has a remarkable heart repair capacity after injury, and promises novel translational applications. Amputation and cryoinjury models are key research tools for understanding injury response and regeneration in vivo. An understanding of the transcriptional responses following injury is needed to identify key players of heart tissue repair, as well as potential targets for boosting this property in humans. RESULTS: We investigated amputation and cryoinjury in vivo models of heart damage in the zebrafish through unbiased, integrative analyses of independent molecular datasets. To detect genes with potential biological roles, we derived computational prediction models with microarray data from heart amputation experiments. We focused on a top-ranked set of genes highly activated in the early post-injury stage, whose activity was further verified in independent microarray datasets. Next, we performed independent validations of expression responses with qPCR in a cryoinjury model. Across in vivo models, the top candidates showed highly concordant responses at 1 and 3 days post-injury, which highlights the predictive power of our analysis strategies and the possible biological relevance of these genes. Top candidates are significantly involved in cell fate specification and differentiation, and include heart failure markers such as periostin, as well as potential new targets for heart regeneration. For example, ptgis and ca2 were overexpressed, while usp2a, a regulator of the p53 pathway, was down-regulated in our in vivo models. Interestingly, a high activity of ptgis and ca2 has been previously observed in failing hearts from rats and humans. CONCLUSIONS: We identified genes with potential critical roles in the response to cardiac damage in the zebrafish. Their transcriptional activities are reproducible in different in vivo models of cardiac injury.
Resumo:
We propose an alternative approach to obtaining a permanent equilibrium exchange rate (PEER), based on an unobserved components (UC) model. This approach offers a number of advantages over the conventional cointegration-based PEER. Firstly, we do not rely on the prerequisite that cointegration has to be found between the real exchange rate and macroeconomic fundamentals to obtain non-spurious long-run relationships and the PEER. Secondly, the impact that the permanent and transitory components of the macroeconomic fundamentals have on the real exchange rate can be modelled separately in the UC model. This is important for variables where the long and short-run effects may drive the real exchange rate in opposite directions, such as the relative government expenditure ratio. We also demonstrate that our proposed exchange rate models have good out-of sample forecasting properties. Our approach would be a useful technique for central banks to estimate the equilibrium exchange rate and to forecast the long-run movements of the exchange rate.