950 resultados para Macro instructions (Electronic computers)
Resumo:
This paper analyses the efficiency and productivity growth of the Electronic Sector of India in the liberalization era since 1991. The study gives an insight into the process of the growth of one of the most upcoming sector of this decade. This sector has experienced a vast structural change along with the changing economic structures in India after liberalisation. With the opening up of this sector to foreign market and incoming of multinational companies, the environment has become highly competitive. The law that operates is that of Darwin’s ‘Survival of the fittest’. Existing industries experience a continuous threat of exit due to entrance of new potential entrants. Thus, it becomes inevitable for the existing industries in this sector to improve productivity growth for their survival. It is thus important to analyze how the industries in this sector have performed over the years and what are the factors that have contributed to the overall output growth.
Resumo:
We describe here a minimal theory of tight-binding electrons moving on the square planar Cu lattice of the hole-doped cuprates and mixed quantum mechanically with their own Cooper pairs. The superconductivity occurring at the transition temperature T(c) is the long-range, d-wave symmetry phase coherence of these Cooper pairs. Fluctuations, necessarily associated with incipient long-range superconducting order, have a generic large-distance behavior near T(c). We calculate the spectral density of electrons coupled to such Cooper-pair fluctuations and show that features observed in angle resolved photoemission spectroscopy (ARPES) experiments on different cuprates above T(c) as a function of doping and temperature emerge naturally in this description. These include ``Fermi arcs'' with temperature-dependent length and an antinodal pseudogap, which fills up linearly as the temperature increases toward the pseudogap temperature. Our results agree quantitatively with experiment. Below T(c), the effects of nonzero superfluid density and thermal fluctuations are calculated and compared successfully with some recent ARPES experiments, especially the observed bending or deviation of the superconducting gap from the canonical d-wave form.
The electronic structure of the alloying element and the stability of the gamma phase in iron alloys
Resumo:
Mixed ionic and electronic conduction in Zr02-based solid electrolytes was studied.The effect of impurities and second-phase particles on the mixed conduction parameter, P,, was measured for different types of ZrOZ electrolytes. The performance of solid-state sensors incorporating ZrOZ electrolytes is sometimes limited by electronic conduction in ZrOZ, especially at temperatures >I800 K. Methods for eliminating or minimizing errors in measured emf due to electronically driven transport of oxygen anions are discussed. Examples include probes for monitoring oxygen content in liquid steel as well as the newly developed sulfur sensor based on a ZrOz(Ca0) + CaS electrolyte. The use of mixed conducting ZrOZ as a semipermeable membrane or chemically selective sieve for oxygen at high temperatures is discussed. Oxygen transport from liquid iron to CO + C& gas mixtures through a ZrOZ membrane driven by a chemical potential gradient, in the absence of electrical leads or imposed potentials, was experimentally observed.
Resumo:
One of the long standing problems in quantum chemistry had been the inability to exploit full spatial and spin symmetry of an electronic Hamiltonian belonging to a non-Abelian point group. Here, we present a general technique which can utilize all the symmetries of an electronic (magnetic) Hamiltonian to obtain its full eigenvalue spectrum. This is a hybrid method based on Valence Bond basis and the basis of constant z-component of the total spin. This technique is applicable to systems with any point group symmetry and is easy to implement on a computer. We illustrate the power of the method by applying it to a model icosahedral half-filled electronic system. This model spans a huge Hilbert space (dimension 1,778,966) and in the largest non-Abelian point group. The C60 molecule has this symmetry and hence our calculation throw light on the higher energy excited states of the bucky ball. This method can also be utilized to study finite temperature properties of strongly correlated systems within an exact diagonalization approach. (C) 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012
Resumo:
Photoemission spectroscopy offers the unique possibility of mapping out the electronic structure of the occupied electron states. However, the extreme surface sensitivity of this technique ensures that only the surface and the near-surface regions of any sample are probed. An important question arises in this context—Is the electronic structure of the surface region the same as that of the bulk? We address this issue using two different series of vanadium oxides, Ca1−xSrxVO3 and La1−xCaxVO3. Our results clearly establish that the electronic structure of the surface region is drastically different from that of the bulk in both these cases. We provide a method to separate the two contributions: one arising from the near-surface region and the other representative of the bulk. This separation allows us to deduce some very unusual behaviors of the electronic structures in these systems.
Resumo:
Symmetrized DMRG calculations on long oligomers of poly- para-phenylene (PPP) and poly-para-phenylene vinylene (PPV) systems within a `U-V' model have been carried out to obtain the one-photon, two-photon and singlet-triplet gaps in these systems. The extrapolated gaps (in eV) are 2.89, 3.76 and 2.72 in PPP and 3.01, 3.61 and 2.23 in PPV for the one- photon, two-photon and spin gaps respectively. By studying doped systems, we have obtained the exciton binding energies. The larger exciton binding energies, compared to strongly dimerized linear chains emphasizes the role of topology in these polymers. Bond orders, charge and spin correlations in the low-lying states bring out the similarities between the lowest one-photon, the lowest triplet and the lowest bipolaronic states in these systems. The two-photon state bond orders show evidence for strong localization of this excitation in both PPP and PPV systems.
Resumo:
We report Raman signatures of electronic topological transition (ETT) at 3.6 GPa and rhombohedral (alpha-Bi2Te3) to monoclinic (beta-Bi2Te3) structural transition at similar to 8 GPa. At the onset of ETT, a new Raman mode appears near 107 cm(-1) which is dispersionless with pressure. The structural transition at similar to 8 GPa is marked by a change in pressure derivative of A(1g) and E-g mode frequencies as well as by appearance of new modes near 115 cm(-1) and 135 cm(-1). The mode Grilneisen parameters are determined in both the alpha and beta-phases. (C) 2011 Elsevier Ltd. All rights reserved.
Effect of the Edge Type and Strain on the Structural, Electronic and Magnetic Properties of the BNRs
Resumo:
We present the effect of edge structures on the edge energy and stress of BN nanoribbons. Ab initio density functional calculations show that the armchair edge is lower in energy than the zigzag edge by 0.43 eV/angstrom. Both types of the edges are under the compressive stress. The zigzag edges are mechanically more stable than the armchair edges. Based on the calculated edge energies, the equilibrium shape of the BN flakes are found to be regular hexagonal, and dominated by the armchair edges. The zigzag ribbons are found to be half-metallic, whereas the armchair ribbons are semiconducting.
Resumo:
High molecular weight polyaniline (PANI) was synthesized by a combined procedure incorporating various synthesis methods. Temperature and open circuit potential of the reaction mixture were collected to monitor the reaction progress. The polymer is characterized by various techniques including gel permeation chromatography, dynamic light scattering, infrared spectroscopy, solid-state nuclear magnetic resonance, and differential scanning calorimetry for elucidating the molecular architecture obtained by this method. As-synthesized PANI was found to possess high molecular weight, reduced branching, reduced cross-linking, and to predominantly consist of linear polymer chains. This polymer was also found to be more stable in solution form. JV characteristics of as-synthesized PANI films indicate a high current density which is due to increased free pathways and less traps for the charge transport to occur in PANI films. POLYM. ENG. SCI., 2012. (C) 2012 Society of Plastics Engineers
Resumo:
A strategy called macro-(affinity ligand) facilitated three-phase partitioning (MLFTPP) is described for refolding of a diverse set of recombinant proteins starting from the solubilized inclusion bodies. It essentially consists of: (i) binding of the protein with a suitable smart polymer and (ii) precipitating the polymer-protein complex as an interfacial layer by mixing in a suitable amount of ammonium sulfate and t-butanol. Smart polymers are stimuli-responsive polymers that become insoluble on the application of a suitable stimulus (e.g., a change in the temperature, pH, or concentration of a chemical species such as Ca 2+ or K +). The MLFTPP process required approximately 10min, and the refolded proteins were found to be homogeneous on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The folded proteins were characterized by fluorescence emission spectroscopy, circular dichroism spectroscopy, biological activity, melting temperature, and surface hydrophobicity measurements by 8-anilino-1-naphthalenesulfonate fluorescence. Two refolded antibody fragments were also characterized by measuring K D by Biacore by using immobilized HIV-1 gp120. The data demonstrate that MLFTPP is a rapid and convenient procedure for refolding a variety of proteins from inclusion bodies at high concentration. Although establishing the generic nature of the approach would require wider trials by different groups, its success with the diverse kinds of proteins tried so far appears to be promising.
Resumo:
Changes in electronic and photovoltaic properties of semiconductor nanocrystals predominantly due to changes in shape are discussed here. Cadmium sulfide (CdS) semiconductor nanocrystals of various shapes (tetrapod, tetrahedron, sphere and rod) obtained using an optimized solvothermal process exhibited a mixed cubic (zinc blende) and hexagonal (wurtzite) crystal structure. The simultaneous presence of the two crystal phases in varying amounts is observed to play a pivotal role in determining both the electronic and photovoltaic properties of the CdS nanocrystals. Light to electrical energy conversion efficiencies (measured in two-electrode configuration laboratory solar cells) remarkably decreased by one order in magnitude from tetrapod -> tetrahedron -> sphere -> rod. The tetrapod-CdS nanocrystals, which displayed the highest light to electrical energy conversion efficiency, showed a favorable shift in position of the conduction band edge leading to highest rate of electron injection (from CdS nanocrystal to the wide band gap semiconductor viz, titanium dioxide, TiO2) and lowest rate of electron-hole recombination (higher free electron lifetimes).
Resumo:
The demand for high power density lithium-ion batteries (LIBs) for diverse applications ranging from mobile electronics to electric vehicles have resulted in an upsurge in the development of nanostructured electrode materials worldwide. Graphite has been the anode of choice in commercial LiBs. Due to several detrimental electrochemical and environmental issues, efforts are now on to develop alternative non-carbonaceous anodes which are safe, nontoxic and cost effective and at the same time exhibit high lithium storage capacity and rate capability. Titania (TiO2) and tin (Sn) based systems have gained much attention as alternative anode materials. Nanostructuring of TiO2 and SnO2 have resulted in enhancement of structural stability and electrochemical performances. Additionally, electronic wiring of mesoporous materials using carbon also effectively enhanced electronic conductivity of mesoporous electrode materials. We discuss in this article the beneficial influence of structural spacers and electronic wiring in anatase titania (TiO2) and tin dioxide (SnO2).
Resumo:
In this work, several tertiary amine-based diaryl diselenides were synthesized and evaluated for their glutathione peroxidase (GPx)-like antioxidant activities using hydrogen peroxide, tert-butyl hydroperoxide and cumene hydroperoxide as substrates and thiophenol (PhSH) and glutathione (GSH) as co-substrates. A comparison of the GPx-like activity of 4-methoxy-substituted N,N-dialkylbenzylamine-based diselenides with that of the corresponding 6-methoxy-substituted compounds indicates that the activity highly depends on the position of the methoxy substituent. Although the methoxy group at 4- and 6-position alters the electronic properties of selenium, the substitution at the 6-position provides the required steric protection for some of the key intermediates in the catalytic cycle. A detailed experimental and theoretical investigation reveals that the 6-methoxy substituent prevents the undesired thiol exchange reactions at the selenium centers in the selenenyl sulfide intermediates. The 6-methoxy substituent also prevents the formation of seleninic and selenonic acids. When PhSH is used as the thiol co-substrate, the 4-methoxy-substituted diselenides exhibit GPx-like activity similar to that of the parent compounds as the 4-methoxy substituent does not block the selenium center in the selenenyl sulfide intermediates from thiol exchange reactions. In contrast, the 4-methoxy substituent significantly enhances the GPx-like activity of the diselenides when glutathione (GSH) is used as the co-substrate. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Facile synthesis of two new dimesitylboryl appended BODIPYs is reported. The two dyads have similar fluorescent chromophores but differ in their molecular conformations. They exhibit dual fluorescence, intramolecular energy transfer between boryl and BODIPY chromophores and different fluorescence responses (emission enhancement and quenching) upon fluoride binding.