993 resultados para Laser intensity dependence
Resumo:
Herpes simplex virus types 1 and 2 are the main infectious agents associated with oral and genital ulcerations. These infections are now widely recognized as sexually transmitted diseases. Among treatment options, low-level laser therapy (LLLT) has shown promising clinical results as a longer-lasting suppression therapy. Two clinical cases are described with recurrent labial herpes for which LLLT was used. Following treatment, both patients remained symptom free during the 17-month clinical follow-up period.
Resumo:
INTRODUCTION: The laboratory diagnosis of schistosomiasis is based mainly on the detection of parasite eggs in stool samples through the Kato-Katz (KK) technique, reading one slide by test. However, a widely known limitation of parasitological methods is reduced sensitivity, particularly in low endemic areas. METHODS: To increase sensitivity, we conducted further slide readings from the same stool sample using the parasitological method associated with a serological test. We used the KK method (three slides) and the IgG anti-Schistosoma mansoni-enzyme-linked immunosorbent assay (ELISA) technique to diagnose schistosomiasis in low endemic areas in the Brazilian State of Ceará. Fecal samples and sera from 250 individuals were analyzed. RESULTS: Sixteen percent and 47.2% of samples were positive in parasitological tests and serological tests, respectively. Parasitological methods showed that 32 (80%) individuals tested positive on the first slide, 6 (15%) on the second slide, and 2 (5%) on the third. The performance of the ELISA test in the diagnosis, using the KK method as diagnostic reference, showed a negative predictive value of 100%, with specificity and positive predictive values of 62.8% and 33.9%, respectively. CONCLUSIONS: In this study, the increase from one to three slides analyzed per sample using the KK technique was shown to be a useful procedure for increasing the diagnostic sensitivity of this technique.
Resumo:
The work described in this thesis was performed at the Laboratory for Intense Lasers (L2I) of Instituto Superior Técnico, University of Lisbon (IST-UL). Its main contribution consists in the feasibility study of the broadband dispersive stages for an optical parametric chirped pulse amplifier based on the nonlinear crystal yttrium calcium oxi-borate (YCOB). In particular, the main goal of this work consisted in the characterization and implementation of the several optical devices involved in pulse expansion and compression of the amplified pulses to durations of the order of a few optical cycles (20 fs). This type of laser systems find application in fields such as medicine, telecommunications and machining, which require high energy, ultrashort (sub-100 fs) pulses. The main challenges consisted in the preliminary study of the performance of the broadband amplifier, which is essential for successfully handling pulses with bandwidths exceeding 100 nm when amplified from the μJ to 20 mJ per pulse. In general, the control, manipulation and characterization of optical phenomena on the scale of a few tens of fs and powers that can reach the PW level are extremely difficult and challenging due to the complexity of the phenomena of radiation-matter interaction and their nonlinearities, observed at this time scale and power level. For this purpose the main dispersive components were characterized in detail, specifically addressing the demonstration of pulse expansion and compression. The tested bandwidths are narrower than the final ones, in order to confirm the parameters of these elements and predict the performance for the broadband pulses. The work performed led to additional tasks such as a detailed characterization of laser oscillator seeding the laser chain and the detection and cancelling of additional sources of dispersion.
Resumo:
Introduction In addition to the common alterations and diseases inherent in the aging process, elderly persons with a history of leprosy are particularly vulnerable to dependence because of disease-related impairments. Objective determine whether physical impairment from leprosy is associated with dependence among the elderly. Methods An analytical cross-sectional study of elderly individuals with a history of leprosy and no signs of cognitive impairment was conducted using a database from a former leprosy colony-hospital. The patients were evaluated for dependence in the basic activities of daily living (BADL) and instrumental activities of daily living (IADL), respectively) and subjected to standard leprosy physical disability grading. Subsequently, descriptive and univariate analyses were conducted, the latter using Pearson's chi-squared test. Results A total of 186 elderly persons were included in the study. Of these individuals, 53.8% were women, 49.5% were older than 75 years of age, 93% had four or less years of formal education, 24.2% lived in an institution for the long-term care of the elderly (ILTC), and 18.3% had lower limb amputations. Among those evaluated, 79.8% had visible physical impairments from leprosy (grade 2), 83.3% were independent in BADL, and 10.2% were independent in IADL. There was a higher impairment grade among those patients who were IADL dependent (p=0.038). Conclusion s: The leprosy physical impairment grade is associated with dependence for IADL, creating the need for greater social support and systematic monitoring by a multidisciplinary team. The results highlight the importance of early diagnosis and treatment of leprosy to prevent physical impairment and dependence in later years.
Resumo:
Apesar do elevado potencial do metal magnésio como material útil em várias áreas cien-tíficas e tecnológicas, os seus métodos de produção tradicionais têm um impacto fortemente prejudicial no ambiente e um custo elevado. Este facto é um incentivo à procura de novas so-luções, nomeadamente as que recorrem à utilização da radiação solar partindo do óxido de magnésio. Alguns estudos têm já sido feitos nesse sentido, utilizando laser solar ou radiação solar concentrada mas a utilização concertada dos dois não tinha sido feita até ao momento. Neste trabalho, a exequibilidade da utilização concertada destes dois métodos será avaliada e será estudado o comportamento do óxido de magnésio face à radiação que nele incide.
Resumo:
O revestimento com laser permite criar revestimentos localizados pela adição de uma liga similar ou dissimilar. O revestimento visa melhorar as características da superfície metálica, tais como a dureza, a resistência ao desgaste por atrito, à corrosão e à fadiga térmica dos componentes sujeitos a condições adversas de trabalho por prolongados períodos de tempo. Esta dissertação tem como objetivo o melhoramento da configuração, a automatização do sistema de revestimento com laser do Laboratório de Laser do Instituto Superior Técnico (IST) da Universidade de Lisboa, utilizado pelo Centro de Física e Engenharia de Materiais Avançados do Instituto Superior Técnico – CeFEMA e a realização de ensaios de deposições com o fim de validação. Foram estudadas as configurações possíveis para o sistema de posicionamento da amostra, do laser e a configuração para o posicionamento com precisão do bocal de adição de pós ao banho de fusão. Após este estudo foram apresentadas e implementadas as propostas de melhoria do sistema inicial. Para tornar o sistema funcional, foi desenvolvido um controlador para comandar as três guias motorizadas de movimento linear OWIS, o laser IPG YLR e o alimentador de pós PLASMA-TECHNIK. Para simplificar a utilização aos investigadores do CeFEMA foi ainda desenvolvida uma interface gráfica que permite ao utilizador definir os principais parâmetros do processo Para a validação do trabalho desenvolvido foram realizados diversos ensaios de deposição da liga Ti52Ta num substrato de titânio. Através dos ensaios de deposição foi estudada a influência de alguns parâmetros do processo na geometria do revestimento obtido, como a altura, a profundidade, o ângulo do cordão, a diluição entre o material de adição e o substrato, tendo ainda sido estudada a influência dos parâmetros do processo na eficiência de deposição.
Resumo:
An ion emitter consisting of a sharp silver tip covered in RbAg4I5 solid electrolyte film has been developed and studied. An accelerating potential is applied and Ag+ ions are emitted from the tip’s apex by field evaporation. The emitted ions are collected by a Faraday cup, producing a current on the pico/nanoampere level which is read by an electrometer. The tips were produced mechanically by sandpaper polishing. The sharpest tip produced had a 2:4 m apex radius. Two deposition methods were studied: thermal vacuum and pulsed laser deposition. The best tip produced a peak current value of 96nA at 180oC, and a quasi-stable 4nA emission current at 160oC, both using an extraction potential of 10kV . The emission dependence on time, temperature and accelerating potential has been studied. Deposited films were characterized by X-ray diffraction (XRD), profilometry, optical and Scanning Electron Microscope (SEM) and Secondary Ion Mass Spectroscopy (SIMS) measurements. Several ion emitters were developed, the latter ones were all able to maintain stable high ion emissions for long periods of time. This investigation was a continuation of an ongoing project backed by the European Space Agency, with the objective of making a proof of concept of this kind of ion emitter with potential application on ion thrusters for orbiting satellites. Going forward, it would be interesting to make a finer analysis of the electrolyte’s conductivity at high temperatures, explore Wien Effect-based emission and to further develop a multi-tip ion emitter prototype.
Resumo:
Contém resumo
Resumo:
The work presented in this thesis aims at developing a new separation process based on the application of supported magnetic ionic liquid membranes, SMILMs, using magnetic ionic liquids, MILs. MILs have attracted growing interest due to their ability to change their physicochemical characteristics when exposed to variable magnetic field conditions. The magnetic responsive behavior of MILs is thus expected to contribute for the development of more efficient separation processes, such as supported liquid membranes, where MILs may be used as a selective carrier. Driven by the MILs behavior, these membranes are expected to switch reversibly their permeability and selectivity by in situ and non-invasive adjustment of the conditions (e.g. intensity, direction vector and uniformity) of an external applied magnetic field. The development of these magnetic responsive membrane processes were anticipated by studies, performed along the first stage of this PhD work, aiming at getting a deep knowledge on the influence of magnetic field on MILs properties. The influence of the magnetic field on the molecular dynamics and structural rearrangement of MILs ionic network was assessed through a 1H-NMR technique. Through the 1H-NMR relaxometry analysis it was possible to estimate the self-diffusion profiles of two different model MILs, [Aliquat][FeCl4] and [P66614][FeCl4]. A comparative analysis was established between the behavior of magnetic and non-magnetic ionic liquids, MILs and ILs, to facilitate the perception of the magnetic field impact on MILs properties. In contrast to ILs, MILs show a specific relaxation mechanism, characterized by the magnetic dependence of their self-diffusion coefficients. MILs self-diffusion coefficients increased in the presence of magnetic field whereas ILs self-diffusion was not affected. In order to understand the reasons underlying the magnetic dependence of MILs self-diffusion, studies were performed to investigate the influence of the magnetic field on MILs’ viscosity. It was observed that the MIL´s viscosity decreases with the increase of the magnetic field, explaining the increase of MILs self-diffusion according to the modified Stokes- Einstein equation. Different gas and liquid transport studies were therefore performed aiming to determine the influence of the magnetic behavior of MILs on solute transport through SMILMs. Gas permeation studies were performed using pure CO2 andN2 gas streams and air, using a series of phosphonium cation based MILs, containing different paramagnetic anions. Transport studies were conducted in the presence and absence of magnetic field at a maximum intensity of 1.5T. The results revealed that gas permeability increased in the presence of the magnetic field, however, without affecting the membrane selectivity. The increase of gas permeability through SMILMs was related to the decrease of the MILs viscosity under magnetic field conditions.(...)
Resumo:
Welle Laser is a Brazilian company that manufactures marking and engraving machines mainly for large-scale industry segments providing solutions that help increase productivity. Welle laser has 60% market share in Brazil and decided to go internationally in 2015, mainly to increase revenues and diversify business risks. Welle opened an office in Switzerland and celebrated a contract with a Mexican company to distribute their machines in Mexico. The next step for Welle is expanding its operation to USA. In my project I accessed the viability and reasons to enter the US market, the region where Welle should start its operation, and the best entry mode strategy.
Resumo:
This paper presents a simulation model, which was incorporated into a Geographic Information System (GIS), in order to calculate the maximum intensity of urban heat islands based on urban geometry data. The method-ology of this study stands on a theoretical-numerical basis (Okeâ s model), followed by the study and selection of existing GIS tools, the design of the calculation model, the incorporation of the resulting algorithm into the GIS platform and the application of the tool, developed as exemplification. The developed tool will help researchers to simulate UHI in different urban scenarios.
Resumo:
Dissertação de mestrado integrado em Engenharia Mecânica
Resumo:
Measurements of the centrality and rapidity dependence of inclusive jet production in sNN−−−√=5.02 TeV proton--lead (p+Pb) collisions and the jet cross-section in s√=2.76 TeV proton--proton collisions are presented. These quantities are measured in datasets corresponding to an integrated luminosity of 27.8 nb−1 and 4.0 pb−1, respectively, recorded with the ATLAS detector at the Large Hadron Collider in 2013. The p+Pb collision centrality was characterised using the total transverse energy measured in the pseudorapidity interval −4.9<η<−3.2 in the direction of the lead beam. Results are presented for the double-differential per-collision yields as a function of jet rapidity and transverse momentum (pT) for minimum-bias and centrality-selected p+Pb collisions, and are compared to the jet rate from the geometric expectation. The total jet yield in minimum-bias events is slightly enhanced above the expectation in a pT-dependent manner but is consistent with the expectation within uncertainties. The ratios of jet spectra from different centrality selections show a strong modification of jet production at all pT at forward rapidities and for large pT at mid-rapidity, which manifests as a suppression of the jet yield in central events and an enhancement in peripheral events. These effects imply that the factorisation between hard and soft processes is violated at an unexpected level in proton--nucleus collisions. Furthermore, the modifications at forward rapidities are found to be a function of the total jet energy only, implying that the violations may have a simple dependence on the hard parton--parton kinematics.
Resumo:
In this study, Ag:SiC nanocermets were prepared via rapid thermal annealing (RTA) of pulsed laser-deposited SiC/Ag/SiC trilayers grown on Si substrate. Atomic force microscope images show that silver nanoparticles (Ag NPs) are formed after RTA, and the size of NPs increases with increasing Ag deposition time (t Ag). Sharp dip observed in the reflectance spectra confirmed the existence of Ag surface plasmons (SPs). The infrared transmission spectra showed an intense and broad absorption band around 780–800 cm−1 that can be assigned to Si-C stretching vibration mode. Influence of t Ag on the spectral characteristics of SP-enhanced photoluminescence (PL) and electrical properties of silicon carbide (SiC) films has been investigated. The maximum PL enhancement by 5.5 times for Ag:SiC nanocermets is achieved when t Ag ≈ 50 s. This enhancement is due to the strong resonant coupling between SiC and the SP oscillations of the Ag NPs. Presence of Ag NPs in SiC also induces a forming-free resistive switching with switching ratio of 2 × 10−2. The analysis of I–V curves demonstrates that the trap-controlled space-charge-limited conduction with filamentary model is the governing mechanism for the resistive switching in nanocerment thin films.