936 resultados para Laboratory
Resumo:
OBJECTIVE To evaluate whether magnetic resonance imaging (MRI) is effective as computed tomography (CT) in determining morphologic and functional pulmonary changes in patients with cystic fibrosis (CF) in association with multiple clinical parameters. MATERIALS AND METHODS Institutional review board approval and patient written informed consent were obtained. In this prospective study, 30 patients with CF (17 men and 13 women; mean (SD) age, 30.2 (9.2) years; range, 19-52 years) were included. Chest CT was acquired by unenhanced low-dose technique for clinical purposes. Lung MRI (1.5 T) comprised T2- and T1-weighted sequences before and after the application of 0.1-mmol·kg gadobutrol, also considering lung perfusion imaging. All CT and MR images were visually evaluated by using 2 different scoring systems: the modified Helbich and the Eichinger scores. Signal intensity of the peribronchial walls and detected mucus on T2-weighted images as well as signal enhancement of the peribronchial walls on contrast-enhanced T1-weighted sequences were additionally assessed on MRI. For the clinical evaluation, the pulmonary exacerbation rate, laboratory, and pulmonary functional parameters were determined. RESULTS The overall modified Helbich CT score had a mean (SD) of 15.3 (4.8) (range, 3-21) and median of 16.0 (interquartile range [IQR], 6.3). The overall modified Helbich MR score showed slightly, not significantly, lower values (Wilcoxon rank sum test and Student t test; P > 0.05): mean (SD) of 14.3 (4.7) (range, 3-20) and median of 15.0 (IQR, 7.3). Without assessment of perfusion, the overall Eichinger score resulted in the following values for CT vs MR examinations: mean (SD), 20.3 (7.2) (range, 4-31); and median, 21.0 (IQR, 9.5) vs mean (SD), 19.5 (7.1) (range, 4-33); and median, 20.0 (IQR, 9.0). All differences between CT and MR examinations were not significant (Wilcoxon rank sum tests and Student t tests; P > 0.05). In general, the correlations of the CT scores (overall and different imaging parameters) to the clinical parameters were slightly higher compared to the MRI scores. However, if all additional MRI parameters were integrated into the scoring systems, the correlations reached the values of the CT scores. The overall image quality was significantly higher for the CT examinations compared to the MRI sequences. CONCLUSIONS One major diagnostic benefit of lung MRI in CF is the possible acquisition of several different morphologic and functional imaging features without the use of any radiation exposure. Lung MRI shows reliable associations with CT and clinical parameters, which suggests its implementation in CF for routine diagnosis, which would be particularly important in follow-up imaging over the long term.
Resumo:
The induction of activity of the enzyme nitrate reductase (NR, EC 1.6.6.1, 1.6.6.2) in needles of Norway spruce (Picea abies[L.] Karst.) by nitrogen dioxide (NO2) was studied under laboratory and field conditions. In fumigation chambers an increase in nitrate reductase activity (NRA) was detected 4 h after the start of the NO2 treatment. During the first 2 days with 100 µg NO2 m−3, NRA reached a constant level and did not change during the following 4 days. At the same level of NO2, NRA was lower in needles from trees grown on NPK-fertilized soil than on non-fertilized soil. After the transfer of spruce trees from fertilized soil to NPK-rich nutrient solution, NRA was transiently increased. This effect was assigned to root injuries causing nitrate transport to the shoot and subsequent induction of NRA. Neither trees on fertilized soil nor trees transferred to NPK-poor nutrient solution had increased NRA unless NO2 was provided. The NO2 gradient in the vicinity of a highway was used to test the long-term effect of elevated levels of NO2 on needle NRA of potted and field-grown spruce trees. Compared with less polluted sites, permanently increased NRAs were detected when NO2 concentrations were above 20 µg m−3. Controls of field measurements some 10 years after the introduction of catalytic converters in cars showed no significant change neither in NO2 levels nor in the decreasing NRA of spruce needles with the distance from the highway.
Resumo:
Cognitive processes are influenced by underlying affective states, and tests of cognitive bias have recently been developed to assess the valence of affective states in animals. These tests are based on the fact that individuals in a negative affective state interpret ambiguous stimuli more pessimistically than individuals in a more positive state. Using two strains of mice we explored whether unpredictable chronic mild stress (UCMS) can induce a negative judgement bias and whether variation in the expression of stereotypic behaviour is associated with variation in judgement bias. Sixteen female CD-1 and 16 female C57BL/6 mice were trained on a tactile conditional discrimination test with grade of sandpaper as a cue for differential food rewards. Once they had learned the discrimination, half of the mice were subjected to UCMS for three weeks to induce a negative affective state. Although UCMS induced a reduced preference for the higher value reward in the judgement bias test, it did not affect saccharine preference or hypothalamic–pituitary–adrenal (HPA) activity. However, UCMS affected responses to ambiguous (intermediate) cues in the judgement bias test. While control mice showed a graded response to ambiguous cues, UCMS mice of both strains did not discriminate between ambiguous cues and tended to show shorter latencies to the ambiguous cues and the negative reference cue. UCMS also increased bar-mouthing in CD-1, but not in C57BL/6 mice. Furthermore, mice with higher levels of stereotypic behaviour made more optimistic choices in the judgement bias test. However, no such relationship was found for stereotypic bar-mouthing, highlighting the importance of investigating different types of stereotypic behaviour separately.
Resumo:
The biological safety profession has historically functioned within an environment based on recommended practices rather than regulations, so summary data on compliance or noncompliance with recommended practices is largely absent from the professional literature. The absence of safety performance outcome data is unfortunate since the concept of biosafety containment is based on a combination of facility based controls and workplace practices, and persistent failures in either type of controls could ultimately result in injury or death. In addition, the number of laboratories requiring biosafety containment is likely to grow significantly in the coming years in the wake of the terrorist events of 2001. In this study, the outcomes of 768 biosafety level 2 (BSL-2) safety surveys were analyzed for commonalities and trends. Items of non-compliance noted were classified as facility related or practice related. The most frequent item of noncompliance encountered was the failure to re-certify biosafety cabinetry. Not surprisingly, the preponderance of the other frequent items of non-compliance encountered were practice related, such as general housekeeping orderly, changes in compliance levels, as well as establish trends in the elements of items of non-compliance during the sequential survey period. The findings described in this study are significant because, for the first time, the outcomes of compliance with recommended biosafety practices can be characterized and thus used as the basis for focused interventions. Since biosafety is heavily reliant on adherence to specific safety practices, the ability to focus interventions on objectively identified practice-related items of non-compliance can assist in the reduction of worker risk in this area experiencing tremendous growth. The information described is also of heighten importance given the number of workplaces expected to involve potentially infectious agents in the coming years. ^
Resumo:
The purpose of this research was to study groups of students and young professionals in the clinical laboratory science field using exploratory discovery and inductive logic regarding the attitudes of four groups in Texas: (1) 3rd and 4th year college biology students, (2) students currently enrolled in Clinical Laboratory Science/Clinical Laboratory Technician (CLS/CLT) programs, (3) young CLS/CLT professionals (1-2 years post education), and (4) mid-career CLS/CLTs (4-10 years post education). It was also a comparative study looking at these four groups and their attitudes and perception regarding: career selection factors and legislative incentive measures which might attract individuals to an allied health care career, the field of practice and factors needed to keep individuals in the chosen field of practice. ^ The study found that the career is attractive to individuals who enjoy laboratory work and find the various areas in which to choose to work very attractive. Government programs offering grants/scholarships or loan forgiveness programs offered by health care institutions would be beneficial in attracting students to study in the clinical laboratory sciences. Students are unsure if there is a viable career ladder associated with the field and are anticipating the possibility of going on to other fields in the future. ^ While young and mid-career professionals share many of the same points of view on some aspects (skills used, trends) of the CLS/CLT profession there were a few areas were opinions diverged; perceptions of the field itself and if they plan to remain in the profession for the next 5 years. The mid-career professionals had a much more negative outlook on the profession (low salary, no visible career ladder, lack of respect from other health care professionals) and only a small number plan to be in the field within the next 5 years. ^ The lower salaries in the profession as compared to other similar health care careers, lack of a career ladder and lack of respect from laboratory and institutional management and other health care providers are critical missing pieces to the retention of CLS/CLT professionals. ^
Resumo:
The role of clinical chemistry has traditionally been to evaluate acutely ill or hospitalized patients. Traditional statistical methods have serious drawbacks in that they use univariate techniques. To demonstrate alternative methodology, a multivariate analysis of covariance model was developed and applied to the data from the Cooperative Study of Sickle Cell Disease.^ The purpose of developing the model for the laboratory data from the CSSCD was to evaluate the comparability of the results from the different clinics. Several variables were incorporated into the model in order to control for possible differences among the clinics that might confound any real laboratory differences.^ Differences for LDH, alkaline phosphatase and SGOT were identified which will necessitate adjustments by clinic whenever these data are used. In addition, aberrant clinic values for LDH, creatinine and BUN were also identified.^ The use of any statistical technique including multivariate analysis without thoughtful consideration may lead to spurious conclusions that may not be corrected for some time, if ever. However, the advantages of multivariate analysis far outweigh its potential problems. If its use increases as it should, the applicability to the analysis of laboratory data in prospective patient monitoring, quality control programs, and interpretation of data from cooperative studies could well have a major impact on the health and well being of a large number of individuals. ^
Resumo:
Dissolved organic matter (DOM) in the oceans constitutes a major carbon pool involved in global biogeochemical cycles. More than 96% of the marine DOM resists microbial degradation for thousands of years. The composition of this refractory DOM (RDOM) exhibits a molecular signature which is ubiquitously detected in the deep oceans. Surprisingly efficient microbial transformation of labile into RDOM was shown experimentally, implying that microorganisms produce far more RDOM than needed to sustain the global pool. By assessing the microbial formation and transformation of DOM in unprecedented molecular detail for 3 years, we show that most of the newly formed RDOM is molecularly different from deep sea RDOM. Only <0.4% of the net community production was channeled into RDOM molecularly undistinguishable from deep sea DOM. Our study provides novel experimentally derived molecular evidence and data for global models on the production, turnover and accumulation of marine DOM.
Resumo:
A prominent control on the flow over subaqueous dunes is the slope of the downstream leeside. While previous work has focused on steep (~30°), asymmetric dunes with permanent flow separation, little is known about dunes with lower lee-slope angles for which flow separation is absent or intermittent. Here, we present a laboratory investigation where we systematically varied the dune lee-slope, holding other geometric parameters and flow hydraulics constant, to explore effects on the turbulent flow field and flow resistance. Three sets of fixed dunes (lee-slopes of 10°, 20° and 30°) were separately installed in a 15 m long and 1 m wide flume and subjected to 0.20 m deep flow. Measurements consisted of high-frequency, vertical profiles collected with a Laser Doppler Velocimeter (LDV). We show that the temporal and spatial occurrence of flow separation decreases with dune lee-slope. Velocity gradients in the dune leeside depict a free shear layer downstream of the 30° dunes and a weaker shear layer closer to the bed for the 20° and 10° dunes. The decrease in velocity gradients leads to lower magnitude of turbulence production for gentle lee-slopes. Aperiodic, strong ejection events dominate the shear layer, but decrease in strength and frequency for low-angle dunes. Flow resistance of dunes decreases with lee-slope; the transition being non-linear. Over the 10°, 20° and 30° dunes, shear stress is 8%, 33% and 90 % greater than a flat bed, respectively. Our results demonstrate that dune lee-slope plays an important, but often ignored role in flow resistance.
Resumo:
Increased atmospheric CO2 concentration is leading to changes in the carbonate chemistry and the temperature of the ocean. The impact of these processes on marine organisms will depend on their ability to cope with those changes, particularly the maintenance of calcium carbonate structures. Both a laboratory experiment (long-term exposure to decreased pH and increased temperature) and collections of individuals from natural environments characterized by low pH levels (individuals from intertidal pools and around a CO2 seep) were here coupled to comprehensively study the impact of near-future conditions of pH and temperature on the mechanical properties of the skeleton of the euechinoid sea urchin Paracentrotus lividus. To assess skeletal mechanical properties, we characterized the fracture force, Young's modulus, second moment of area, material nanohardness, and specific Young's modulus of sea urchin test plates. None of these parameters were significantly affected by low pH and/or increased temperature in the laboratory experiment and by low pH only in the individuals chronically exposed to lowered pH from the CO2 seeps. In tidal pools, the fracture force was higher and the Young's modulus lower in ambital plates of individuals from the rock pool characterized by the largest pH variations but also a dominance of calcifying algae, which might explain some of the variation. Thus, decreases of pH to levels expected for 2100 did not directly alter the mechanical properties of the test of P. lividus. Since the maintenance of test integrity is a question of survival for sea urchins and since weakened tests would increase the sea urchins' risk of predation, our findings indicate that the decreasing seawater pH and increasing seawater temperature expected for the end of the century should not represent an immediate threat to sea urchins vulnerability
Resumo:
Many important chemical reactions occur in polar snow, where solutes may be present in several reservoirs, including at the air-ice interface and in liquid-like regions within the ice matrix. Some recent laboratory studies suggest chemical reaction rates may differ in these two reservoirs. While investigations have examined where solutes are found in natural snow and ice, similar research has not identified solute locations in laboratory samples, nor the possible factors controlling solute segregation. To address this, we examined solute locations in ice samples prepared from either aqueous cesium chloride (CsCl) or Rose Bengal solutions that were frozen using several different methods. Samples frozen in a laboratory freezer had the largest liquid-like inclusions and air bubbles, while samples frozen in a custom freeze chamber had somewhat smaller air bubbles and inclusions; in contrast, samples frozen in liquid nitrogen showed much smaller concentrated inclusions and air bubbles, only slightly larger than the resolution limit of our images (~2 µm). Freezing solutions in plastic versus glass vials had significant impacts on the sample structure, perhaps because the poor heat conductivity of plastic vials changes how heat is removed from the sample as it cools. Similarly, the choice of solute had a significant impact on sample structure, with Rose Bengal solutions yielding smaller inclusions and air bubbles compared to CsCl solutions frozen using the same method. Additional experiments using higher-resolution imaging of an ice sample show that CsCl moves in a thermal gradient, supporting the idea that the solutes in ice are present in liquid-like regions. Our work shows that the structure of laboratory ice samples, including the location of solutes, is sensitive to freezing method, sample container, and solute characteristics, requiring careful experimental design and interpretation of results.
Resumo:
Slowslip forms part of the spectrum of fault behaviour between stable creep and destructive earthquakes. Slow slip occurs near the boundaries of large earthquake rupture zones and may sometimes trigger fast earthquakes. It is thought to occur in faults comprised of rocks that strengthen under fast slip rates, preventing rupture as a normal earthquake, or on faults that have elevated pore-fluid pressures. However, the processes that control slow rupture and the relationship between slow and normal earthquakes are enigmatic. Here we use laboratory experiments to simulate faulting in natural rock samples taken from shallow parts of the Nankai subduction zone, Japan, where very low-frequency earthquakes - a form of slow slip - have been observed.We find that the fault rocks exhibit decreasing strength over millimetre-scale slip distances rather than weakening due to increasing velocity. However, the sizes of the slip nucleation patches in our laboratory simulations are similar to those expected for the very lowfrequency earthquakes observed in Nankai. We therefore suggest that this type of fault-weakening behaviour may generate slow earthquakes. Owing to the similarity between the expected behaviour of slow earthquakes based on our data, and that of normal earthquakes during nucleation, we suggest that some types of slow slip may represent prematurely arrested earthquakes.