978 resultados para King Motor Car Company


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Grattan, J. Gilmore, G. Gilbertson, D. Pyatt, F.B. HUnt, C. McLaren, S. Phillips, P. Denman, A. Radon and King Solomons Miners: Paynan Orefield, Jordanian Desert. The Science of the Total Environment. 2004 319 pp 99-113

Relevância:

20.00% 20.00%

Publicador:

Resumo:

M.H. Lee, Q. Meng and F. Chao, 'A Content-Neutral Approach for Sensory-Motor Learning in Developmental Robotics', EpiRob'06: Sixth International Conference on Epigenetic Robotics, Paris, 55-62, 2006.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

M.H. Lee and Q. Meng, 'Staged development of Robot Motor Coordination', IEEE International Conference on Systems, Man and Cybernetics, (IEEE SMC 05), Hawaii, USA, v3, 2917-2922, 2005.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lee, M., Meng, Q. (2005). Psychologically Inspired Sensory-Motor Development in Early Robot Learning. International Journal of Advanced Robotic Systems, 325-334.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

M.H. Lee and Q. Meng, 'Psychologically Inspired Sensory-Motor Development in Early Robot Learning', in proceedings of Towards Autonomous Robotic Systems 2005 (TAROS-05), Nehmzow, U., Melhuish, C. and Witkowski, M. (Eds.), Imperial College London, 157-163, September 2005. See published version: http://hdl.handle.net/2160/485

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper discusses the fable-like form of Callimachus’ Epigram 1 Pfeiffer and of Sotades’ fragmentary Invective against Ptolemy, and suggests that the former poem may contain an allusion to the latter. In the light of this reading, both poems are to be viewed as playfully encouraging the Ptolemies’ incestuous marriage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

De acuerdo a la normativa de TFEs el repositorio no puede dar acceso a este trabajo. Para consultarlo póngase en contacto con el tutor del trabajo. Puede acceder al resumen del mismo pinchando en el pdf adjunto.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de Mestrado apresentada à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Ciências Empresariais

Relevância:

20.00% 20.00%

Publicador:

Resumo:

http://www.archive.org/details/acrosstheprairie00haseuoft

Relevância:

20.00% 20.00%

Publicador:

Resumo:

— Consideration of how people respond to the question What is this? has suggested new problem frontiers for pattern recognition and information fusion, as well as neural systems that embody the cognitive transformation of declarative information into relational knowledge. In contrast to traditional classification methods, which aim to find the single correct label for each exemplar (This is a car), the new approach discovers rules that embody coherent relationships among labels which would otherwise appear contradictory to a learning system (This is a car, that is a vehicle, over there is a sedan). This talk will describe how an individual who experiences exemplars in real time, with each exemplar trained on at most one category label, can autonomously discover a hierarchy of cognitive rules, thereby converting local information into global knowledge. Computational examples are based on the observation that sensors working at different times, locations, and spatial scales, and experts with different goals, languages, and situations, may produce apparently inconsistent image labels, which are reconciled by implicit underlying relationships that the network’s learning process discovers. The ARTMAP information fusion system can, moreover, integrate multiple separate knowledge hierarchies, by fusing independent domains into a unified structure. In the process, the system discovers cross-domain rules, inferring multilevel relationships among groups of output classes, without any supervised labeling of these relationships. In order to self-organize its expert system, the ARTMAP information fusion network features distributed code representations which exploit the model’s intrinsic capacity for one-to-many learning (This is a car and a vehicle and a sedan) as well as many-to-one learning (Each of those vehicles is a car). Fusion system software, testbed datasets, and articles are available from http://cns.bu.edu/techlab.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper shows how a minimal neural network model of the cerebellum may be embedded within a sensory-neuro-muscular control system that mimics known anatomy and physiology. With this embedding, cerebellar learning promotes load compensation while also allowing both coactivation and reciprocal inhibition of sets of antagonist muscles. In particular, we show how synaptic long term depression guided by feedback from muscle stretch receptors can lead to trans-cerebellar gain changes that are load-compensating. It is argued that the same processes help to adaptively discover multi-joint synergies. Simulations of rapid single joint rotations under load illustrates design feasibility and stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a model of speech production called DIVA that highlights issues of self-organization and motor equivalent production of phonological units. The model uses a circular reaction strategy to learn two mappings between three levels of representation. Data on the plasticity of phonemic perceptual boundaries motivates a learned mapping between phoneme representations and vocal tract variables. A second mapping between vocal tract variables and articulator movements is also learned. To achieve the flexible control made possible by the redundancy of this mapping, desired directions in vocal tract configuration space are mapped into articulator velocity commands. Because each vocal tract direction cell learns to activate several articulator velocities during babbling, the model provides a natural account of the formation of coordinative structures. Model simulations show automatic compensation for unexpected constraints despite no previous experience or learning under these constraints.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A neural model is described of how the brain may autonomously learn a body-centered representation of 3-D target position by combining information about retinal target position, eye position, and head position in real time. Such a body-centered spatial representation enables accurate movement commands to the limbs to be generated despite changes in the spatial relationships between the eyes, head, body, and limbs through time. The model learns a vector representation--otherwise known as a parcellated distributed representation--of target vergence with respect to the two eyes, and of the horizontal and vertical spherical angles of the target with respect to a cyclopean egocenter. Such a vergence-spherical representation has been reported in the caudal midbrain and medulla of the frog, as well as in psychophysical movement studies in humans. A head-centered vergence-spherical representation of foveated target position can be generated by two stages of opponent processing that combine corollary discharges of outflow movement signals to the two eyes. Sums and differences of opponent signals define angular and vergence coordinates, respectively. The head-centered representation interacts with a binocular visual representation of non-foveated target position to learn a visuomotor representation of both foveated and non-foveated target position that is capable of commanding yoked eye movementes. This head-centered vector representation also interacts with representations of neck movement commands to learn a body-centered estimate of target position that is capable of commanding coordinated arm movements. Learning occurs during head movements made while gaze remains fixed on a foveated target. An initial estimate is stored and a VOR-mediated gating signal prevents the stored estimate from being reset during a gaze-maintaining head movement. As the head moves, new estimates arc compared with the stored estimate to compute difference vectors which act as error signals that drive the learning process, as well as control the on-line merging of multimodal information.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article describes a neural network model that addresses the acquisition of speaking skills by infants and subsequent motor equivalent production of speech sounds. The model learns two mappings during a babbling phase. A phonetic-to-orosensory mapping specifies a vocal tract target for each speech sound; these targets take the form of convex regions in orosensory coordinates defining the shape of the vocal tract. The babbling process wherein these convex region targets are formed explains how an infant can learn phoneme-specific and language-specific limits on acceptable variability of articulator movements. The model also learns an orosensory-to-articulatory mapping wherein cells coding desired movement directions in orosensory space learn articulator movements that achieve these orosensory movement directions. The resulting mapping provides a natural explanation for the formation of coordinative structures. This mapping also makes efficient use of redundancy in the articulator system, thereby providing the model with motor equivalent capabilities. Simulations verify the model's ability to compensate for constraints or perturbations applied to the articulators automatically and without new learning and to explain contextual variability seen in human speech production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

How do the layered circuits of prefrontal and motor cortex carry out working memory storage, sequence learning, and voluntary sequential item selection and performance? A neural model called LIST PARSE is presented to explain and quantitatively simulate cognitive data about both immediate serial recall and free recall, including bowing of the serial position performance curves, error-type distributions, temporal limitations upon recall, and list length effects. The model also qualitatively explains cognitive effects related to attentional modulation, temporal grouping, variable presentation rates, phonemic similarity, presentation of non-words, word frequency/item familiarity and list strength, distracters and modality effects. In addition, the model quantitatively simulates neurophysiological data from the macaque prefrontal cortex obtained during sequential sensory-motor imitation and planned performance. The article further develops a theory concerning how the cerebral cortex works by showing how variations of the laminar circuits that have previously clarified how the visual cortex sees can also support cognitive processing of sequentially organized behaviors.