995 resultados para Image synthesis
Free-breathing whole-heart coronary MRA with 3D radial SSFP and self-navigated image reconstruction.
Resumo:
Respiratory motion is a major source of artifacts in cardiac magnetic resonance imaging (MRI). Free-breathing techniques with pencil-beam navigators efficiently suppress respiratory motion and minimize the need for patient cooperation. However, the correlation between the measured navigator position and the actual position of the heart may be adversely affected by hysteretic effects, navigator position, and temporal delays between the navigators and the image acquisition. In addition, irregular breathing patterns during navigator-gated scanning may result in low scan efficiency and prolonged scan time. The purpose of this study was to develop and implement a self-navigated, free-breathing, whole-heart 3D coronary MRI technique that would overcome these shortcomings and improve the ease-of-use of coronary MRI. A signal synchronous with respiration was extracted directly from the echoes acquired for imaging, and the motion information was used for retrospective, rigid-body, through-plane motion correction. The images obtained from the self-navigated reconstruction were compared with the results from conventional, prospective, pencil-beam navigator tracking. Image quality was improved in phantom studies using self-navigation, while equivalent results were obtained with both techniques in preliminary in vivo studies.
Resumo:
Elevated circulating concentrations in modified LDL-cholesterol particles (e.g. oxidised LDL) and low levels in HDL increase not only the risk for diabetic patients to develop cardiovascular diseases but also may contribute to development and progression of diabetes by directly having adverse effects on β-cells. Chronic exposure of β-cells to 2 mM human oxidised LDL-cholesterol (oxLDL) increases the rate of apoptosis, reduce insulin biosynthesis and the secretory capacity of the cells in response to nutrients. In line with the protective role, HDL efficiently antagonised the harmful effects of ox- LDL, suggesting that low levels of HDL would be inefficient to protect β-cells against oxLDL attack in patients. Activation of endoplasmic reticulum (ER) stress is pointed out to contribute to β-cell dysfunction elicited by environmental stressors. In this study we investigated whether activation of ER stress is required for oxLDL to mediate detrimental effects on β-cells and we tested the potential antagonist properties of HDL: The mouse MIN6 insulin-secreting cells were cultured with 2 mM of LDL-cholesterol preparation (native or in vitro oxidized) in the presence or absence of 1 mM of HDL-cholesterol or the ER stress inhibitor 4-phenylbutyrate (4-PBA): Prolonged exposure of MIN6 cells to 2 mM oxLDL-cholesterol for 48 hours led to an increase in expression of ER stress markers such as ATF4, CHOP and p58 and stimulated the splicing of XBP-1 whereas, induction of these markers was not observable in the cells cultured with native LDL. Treatment of the cells with the 4-PBA chemical chaperone molecule efficiently blocked activation of the ER stress markers induced by oxLDL. The latter mediates β-cell dysfunction and apoptosis by diminishing the expression of islet brain 1 (IB1) and Bcl2. The levels of these two proteins were preserved in the cells that were co-treated with oxLDL and the 4-PBA. Consistent with this result we found that blockade of ER stress activation alleviated the loss of insulin synthesis and abolished apoptosis evoked by oxLDL. However incubation of the cells with 4-PBA did not prevent impairment of insulin secretion elicited by oxLDL, indicating that ER stress is not responsible for the oxLDL-mediated defect of insulin secretion. Co-incubation of the cells with HDL mimicked the effects of 4-PBA on the expression of IB1 and Blc2 and thereby counteracted oxLDL attacks on insulin synthesis and cell survivals. We found that HDL efficiently inhibited activation of the ER stress mediated by oxLDL: These data highlight the contribution of the ER stress in the defects of insulin synthesis and cell survivals induced by oxLDL and emphasize the potent role of HDL to counter activation of the oxLDL-mediated ER-stress activation:
Resumo:
Previous studies have reported that a diet containing 10% cocoa, a rich source of flavonoids, has immunomodulatory effects on rats and, among others effects, is able to attenuate the immunoglobulin (Ig) synthesis in both systemic and intestinal compartments. The purpose of the present study was focused on investigating whether these effects were attributed exclusively to the flavonoid content or to other compounds present in cocoa. To this end, eight-week-old Lewis rats were fed, for two weeks, either a standard diet or three isoenergetic diets containing increasing proportions of cocoa flavonoids from different sources: one with 0.2% polyphenols from conventional defatted cocoa, and two others with 0.4% and 0.8% polyphenols, respectively, from non-fermented cocoa. Diet intake and body weight were monitored and fecal samples were obtained throughout the study to determine fecal pH, IgA, bacteria proportions, and IgA-coated bacteria. Moreover, IgG and IgM concentrations in serum samples collected during the study were quantified. At the end of the dietary intervention no clear changes of serum IgG or IgM concentrations were quantified, showing few effects of cocoa polyphenol diets at the systemic level. However, in the intestine, all cocoa polyphenol-enriched diets attenuated the age-related increase of both fecal IgA and IgA-coated bacteria, as well as the proportion of bacteria in feces. As these effects were not dependent on the dose of polyphenol present in the diets, other compounds and/or the precise polyphenol composition present in cocoa raw material used for the diets could be key factors in this effect.
Resumo:
Introduction and aims. During last few decades, the prevalence of obesity, metabolic syndrome and insulin resistance, among other metabolic disturbances, has raised considerably in many countries worldwide. Environmental factors (diet, physical activity), in tandem with predisposing genetic factors, may be responsible for this trend. Along with an increase in total energy consumption during recent decades, there has also been a shift in the type of nutrients, with an increased consumption of fructose, largely attributable to a greater intake of beverages containing high levels of fructose...
Resumo:
Introduction and aims. During last few decades, the prevalence of obesity, metabolic syndrome and insulin resistance, among other metabolic disturbances, has raised considerably in many countries worldwide. Environmental factors (diet, physical activity), in tandem with predisposing genetic factors, may be responsible for this trend. Along with an increase in total energy consumption during recent decades, there has also been a shift in the type of nutrients, with an increased consumption of fructose, largely attributable to a greater intake of beverages containing high levels of fructose...
Resumo:
Cystatin C (CstC) is a cysteine protease inhibitor of major clinical importance. Low concentration of serum CstC is linked to atherosclerosis. CstC can prevent formation of amyloid β associated with Alzheimer's disease and can itself form toxic aggregates. CstC regulates NO secretion by macrophages and is a TGF-β antagonist. Finally, the serum concentration of CstC is an indicator of kidney function. Yet, little is known about the regulation of CstC expression in vivo. In this study, we demonstrate that the transcription factor IFN regulatory factor 8 (IRF-8) is critical for CstC expression in primary dendritic cells. Only those cells with IRF-8 bound to the CstC gene promoter expressed high levels of the inhibitor. Secretion of IL-10 in response to inflammatory stimuli downregulated IRF-8 expression and consequently CstC synthesis in vivo. Furthermore, the serum concentration of CstC decreased in an IL-10-dependent manner in mice treated with the TLR9 agonist CpG. CstC synthesis is therefore more tightly regulated than hitherto recognized. The mechanisms involved in this regulation might be targeted to alter CstC production, with potential therapeutic value. Our results also indicate that caution should be exerted when using the concentration of serum CstC as an indicator of kidney function in conditions in which inflammation may alter CstC production.
Resumo:
Malaria, a disease of worldwide significance, is responsible for over one million deaths annually. The liver-stage of Plasmodium's life cycle is the first, obligatory, but clinically silent step in malaria infection. The P. falciparum type II fatty acid biosynthesis pathway (PfFAS-II) has been found to be essential for complete liver-stage development and has been regarded as a potential antimalarial target for the development of drugs for malaria prophylaxis and liver-stage eradication. In this paper, new coumarin-based triclosan analogues are reported and their biological profile is explored in terms of inhibitory potency against enzymes of the PfFAS-II pathway. Among the tested compounds, 7 and 8 showed the highest inhibitory potency against Pf enoyl-ACP-reductase (PfFabI), followed by 15 and 3. Finally, we determined the crystal structures of compounds 7 and 11 in complex with PfFabI to identify their mode of binding and to confirm outcomes of docking simulations.
Resumo:
C75 is a synthetic racemic α-methylene-γ-butyrolactone exhibiting anti-tumoral properties in vitro and in vivo as well as inducing hypophagia and weight loss in rodents. These interesting properties are thought to be a consequence of the inhibition of the key enzymes FAS and CPT1 involved in lipid metabolism. The need for larger amounts of this compound for biological evaluation prompted us to develop a convenient and reliable route to multigram quantities of C75 from easily available ethyl penta-3,4-dienoate 6. A recently described protocol for the addition of 6 to a mixture of dicyclohexylborane and nonanal followed by acidic treatment of the crude afforded lactone 8, as a mixture of cis and trans isomers, in good yield. The DBU-catalyzed isomerization of the methyl esters 9 arising from 8 gave a 10:1 trans/cis mixture from which the trans isomer was isolated and easily transformed into C75. The temporary transformation of C75 into a phenylseleno ether derivative makes its purification, manipulation and storage easier.
Resumo:
L'article aborde la façon dont la série BD Le Linceul (2003-2006) s'approprie, dans le cadre de la fiction et du récit d'action grand public, le contexte de la réception de l'image acheiropoïète du Saint Suaire, intégrant la référence à des enjeux théologiques et scientifiques au sein d'une histoire à suspense située à différentes époques et dont les nombreux rebondissements s'articulent autour d'une croyance progressive dans le statut sacré de la vera icon. L'examen détaillé de certains choix narratifs et graphiques de l'auteur Laurent Bidot permet de dégager les modalités d'une exploitation contemporaine et (a priori) laïcisée de la figure de Jésus qui, à l'ère des technologies numériques, conserve sa part de mystère. Dans une perspective narratologique, l'interprétation procède principalement de constats liés à l'organisation énonciative de cette production bédéique.
Resumo:
The major objective of this project is to evaluate image analysis for characterizing air voids in Portland cement contract (PCC) and asphalt concrete (AC) and aggregate gradation in asphalt concrete. Phase 1 of this project has concentrated on evaluation and refinement of sample preparation techniques, evaluation of methods and instruments for conducting image analysis, and finally, analysis and comparison of a select portion of samples. Preliminary results suggest a strong correlation between the results obtained from the linear traverse method and image analysis methods for determining percent air voids in concrete. Preliminary work with asphalt samples has shown that damage caused by a high vacuum of the conventional scanning electron microscope (SEM) may too disruptive. Alternative solutions have been explored, including confocal microscopy and low vacuum electron microscopy. Additionally, a conventional high vacuum SEM operating at a marginal operating vacuum may suffice.
Resumo:
Arabidopsis expressing the castor bean (Ricinus communis) oleate 12-hydroxylase or the Crepis palaestina linoleate 12-epoxygenase in developing seeds typically accumulate low levels of ricinoleic acid and vernolic acid, respectively. We have examined the presence of a futile cycle of fatty acid degradation in developing seeds using the synthesis of polyhydroxyalkanoate (PHA) from the intermediates of the peroxisomal beta-oxidation cycle. Both the quantity and monomer composition of the PHA synthesized in transgenic plants expressing the 12-epoxygenase and 12-hydroxylase in developing seeds revealed the presence of a futile cycle of degradation of the corresponding unusual fatty acids, indicating a limitation in their stable integration into lipids. The expression profile of nearly 200 genes involved in fatty acid biosynthesis and degradation has been analyzed through microarray. No significant changes in gene expression have been detected as a consequence of the activity of the 12-epoxygenase or the 12-hydroxylase in developing siliques. Similar results have also been obtained for transgenic plants expressing the Cuphea lanceolata caproyl-acyl carrier protein thioesterase and accumulating high amounts of caproic acid. Only in developing siliques of the tag1 mutant, deficient in the accumulation of triacylglycerols and shown to have a substantial futile cycling of fatty acids toward beta-oxidation, have some changes in gene expression been detected, notably the induction of the isocitrate lyase gene. These results indicate that analysis of peroxisomal PHA is a better indicator of the flux of fatty acid through beta-oxidation than the expression profile of genes involved in lipid metabolism.
Resumo:
The major features in eating disorders are a preoccupation with food and its consumption and body dissatisfaction. Diagnostic manuals provide clusters of criteria according to which affected individuals can be categorized into one or other group of eating disorder. Yet, when considering the high proportion of comorbidities and ignoring the content of the symptoms (food, body), the major features seem to yield obsessional-compulsive, addictive, and impulsive qualities. In the present article, we review studies from the neuroscientific literature (mainly lesion studies) on eating disorder, obsessive-compulsive disorder, impulse control disorder, and addiction to investigate the possibility of a wider phenotype that can be related to a common brain network. The literature localizes this network to the right frontal lobe and its connectivities. This network, when dysfunctional, might result in a behavior that favors the preoccupation with particular thoughts, behaviors, anxieties, and uncontrollable urges that are accompanied by little scope for ongoing behavioral adjustments (e.g., impulse control). We reason that this network may turn out to be equally involved in understudied mental conditions of dysfunctional body processing such as muscle dysmorphia, body dysmorphic disorder (including esthetic surgery), and xelomelia. We finally consider previous notions of a wider phenotype approach to current diagnostic practice (using DSM), such as the possibility of a model with a reduced number of diagnostic categories and primary and secondary factors, and to etiological models of mental health conditions.
Resumo:
Medium-chain-length polyhydroxyalkanoates (PHAs) are polyesters having properties of biodegradable thermoplastics and elastomers that are naturally produced by a variety of pseudomonads. Saccharomyces cerevisiae was transformed with the Pseudomonas aeruginosa PHAC1 synthase modified for peroxisome targeting by the addition of the carboxyl 34 amino acids from the Brassica napus isocitrate lyase. The PHAC1 gene was put under the control of the promoter of the catalase A gene. PHA synthase expression and PHA accumulation were found in recombinant S. cerevisiae growing in media containing fatty acids. PHA containing even-chain monomers from 6 to 14 carbons was found in recombinant yeast grown on oleic acid, while odd-chain monomers from 5 to 15 carbons were found in PHA from yeast grown on heptadecenoic acid. The maximum amount of PHA accumulated was 0.45% of the dry weight. Transmission electron microscopy of recombinant yeast grown on oleic acid revealed the presence of numerous PHA inclusions found within membrane-bound organelles. Together, these data show that S. cerevisiae expressing a peroxisomal PHA synthase produces PHA in the peroxisome using the 3-hydroxyacyl coenzyme A intermediates of the beta-oxidation of fatty acids present in the media. S. cerevisiae can thus be used as a powerful model system to learn how fatty acid metabolism can be modified in order to synthesize high amounts of PHA in eukaryotes, including plants.
Resumo:
Inference of Markov random field images segmentation models is usually performed using iterative methods which adapt the well-known expectation-maximization (EM) algorithm for independent mixture models. However, some of these adaptations are ad hoc and may turn out numerically unstable. In this paper, we review three EM-like variants for Markov random field segmentation and compare their convergence properties both at the theoretical and practical levels. We specifically advocate a numerical scheme involving asynchronous voxel updating, for which general convergence results can be established. Our experiments on brain tissue classification in magnetic resonance images provide evidence that this algorithm may achieve significantly faster convergence than its competitors while yielding at least as good segmentation results.
Resumo:
PURPOSE: EOS (EOS imaging S.A, Paris, France) is an x-ray imaging system that uses slot-scanning technology in order to optimize the trade-off between image quality and dose. The goal of this study was to characterize the EOS system in terms of occupational exposure, organ doses to patients as well as image quality for full spine examinations. METHODS: Occupational exposure was determined by measuring the ambient dose equivalents in the radiological room during a standard full spine examination. The patient dosimetry was performed using anthropomorphic phantoms representing an adolescent and a five-year-old child. The organ doses were measured with thermoluminescent detectors and then used to calculate effective doses. Patient exposure with EOS was then compared to dose levels reported for conventional radiological systems. Image quality was assessed in terms of spatial resolution and different noise contributions to evaluate the detector's performances of the system. The spatial-frequency signal transfer efficiency of the imaging system was quantified by the detective quantum efficiency (DQE). RESULTS: The use of a protective apron when the medical staff or parents have to stand near to the cubicle in the radiological room is recommended. The estimated effective dose to patients undergoing a full spine examination with the EOS system was 290μSv for an adult and 200 μSv for a child. MTF and NPS are nonisotropic, with higher values in the scanning direction; they are in addition energy-dependent, but scanning speed independent. The system was shown to be quantum-limited, with a maximum DQE of 13%. The relevance of the DQE for slot-scanning system has been addressed. CONCLUSIONS: As a summary, the estimated effective dose was 290μSv for an adult; the image quality remains comparable to conventional systems.