891 resultados para Hydro-electricity. eng


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis evaluates different sites for a weather measurement system and a suitable PV- simulation for University of Surabaya (UBAYA) in Indonesia/Java. The weather station is able to monitor all common weather phenomena including solar insolation. It is planned to use the data for scientific and educational purposes in the renewable energy studies. During evaluation and installation it falls into place that official specifications from global meteorological organizations could not be meet for some sensors caused by the conditions of UBAYA campus. After arranging the hardware the weather at the site was monitored for period of time. A comparison with different official sources from ground based and satellite bases measurements showed differences in wind and solar radiation. In some cases the monthly average solar insolation was deviating 42 % for satellite-based measurements. For the ground based it was less than 10 %. The average wind speed has a difference of 33 % compared to a source, which evaluated the wind power in Surabaya. The wind direction shows instabilities towards east compared with data from local weather station at the airport. PSET has the chance to get some investments to investigate photovoltaic on there own roof. With several simulations a suitable roof direction and the yearly and monthly outputs are shown. With a 7.7 kWpeak PV installation with the latest crystalline technology on the market 8.82 MWh/year could be achieved with weather data from 2012. Thin film technology could increase the value up to 9.13 MWh/year. However, the roofs have enough area to install PV. Finally the low price of electricity in Indonesia makes it not worth to feed in the energy into the public grid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photovoltaic Thermal/Hybrid collectors are an emerging technology that combines PV and solar thermal collectors by producing heat and electricity simultaneously. In this paper, the electrical performance evaluation of a low concentrating PVT collector was done through two testing parts: power comparison and performance ratio testing. For the performance ratio testing, it is required to identify and measure the factors affecting the performance ratio on a low concentrating PVT collector. Factors such as PV cell configuration, collector acceptance angle, flow rate, tracking the sun, temperature dependence and diffuse to irradiance ratio. Solarus low concentrating PVT collector V12 was tested at Dalarna University in Sweden using the electrical equipment at the solar laboratory. The PV testing has showed differences between the two receivers. Back2 was producing 1.8 energy output more than Back1 throughout the day. Front1 and Front2 were almost the same output performance. Performance tests showed that the cell configuration for Receiver2 with cells grouping (6- 32-32-6) has proved to have a better performance ratio when to it comes to minimizing the shading effect leading to more output power throughout the day because of lowering the mismatch losses. Different factors were measured and presented in this thesis in chapter 5. With the current design, it has been obtained a peak power at STC of 107W per receiver. The solar cells have an electrical efficiency of approximately 19% while the maximum measured electrical efficiency for the collector was approximately 18 % per active cell area, in addition to a temperature coefficient of -0.53%/ ˚C. Finally a recommendation was done to help Solarus AB to know how much the electrical performance is affected during variable ambient condition and be able to use the results for analyzing and introducing new modification if needed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study the monitoring results of prototype installation of a recently developed solar combisystem have been evaluated. The system, that uses a water jacketed pellet stove as auxiliary heater, was installed in a single family house in Borlänge/Sweden. In order to allow an evaluation under realistic conditions the system has been monitored for a time period of one year. From the measurements of the system it could be seen that it is important that the pellet stove has a sufficient buffer store volume to minimize cycling. The measurements showed also that the stove gives a lower share of the produced heat to the water loop than measured under stationary conditions. The solar system works as expected and covers the heat demand during the summer and a part of the heat demand during spring and autumn. Potential for optimization exists for the parasitic electricity demand. The system consumes 680 kWh per year for pumps, valves and controllers which is more than 4% of the total primary heating energy demand.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis the solar part of a large grid-connected photovoltaic system design has been done. The main purpose was to size and optimize the system and to present figures helping to evaluate the prospective project rationality, which can potentially be constructed on a contaminated area in Falun. The methodology consisted in PV market study and component selection, site analysis and defining suitable area for solar installation; and system configuration optimization based on PVsyst simulations and Levelized Cost of Energy calculations. The procedure was mainly divided on two parts, preliminary and detailed sizing. In the first part the objective was complex, which included the investigation of the most profitable component combination and system optimization due to tilt and row distance. It was done by simulating systems with different components and orientations, which were sized for the same 100kW inverter in order to make a fair comparison. For each simulated result a simplified LCOE calculation procedure was applied. The main results of this part show that with the price of 0.43 €/Wp thin-film modules were the most cost effective solution for the case with a great advantage over crystalline type in terms of financial attractiveness. From the results of the preliminary study it was possible to select the optimal system configuration, which was used in the detailed sizing as a starting point. In this part the PVsyst simulations were run, which included full scale system design considering near shadings created by factory buildings. Additionally, more complex procedure of LCOE calculation has been used here considered insurances, maintenance, time value of money and possible cost reduction due to the system size. Two system options were proposed in final results; both cover the same area of 66000 m2. The first one represents an ordinary South faced design with 1.1 MW nominal power, which was optimized for the highest performance. According to PVsyst simulations, this system should produce 1108 MWh/year with the initial investment of 835,000 € and 0.056 €/kWh LCOE. The second option has an alternative East-West orientation, which allows to cover 80% of occupied ground and consequently have 6.6 MW PV nominal power. The system produces 5388 MWh/year costs about 4500,000 € and delivers electricity with the same price of 0.056 €/kWh. Even though the EW solution has 20% lower specific energy production, it benefits mainly from lower relative costs for inverters, mounting and annual maintenance expenses. After analyzing the performance results, among the two alternatives none of the systems showed a clear superiority so there was no optimal system proposed. Both, South and East-West solutions have own advantages and disadvantages in terms of energy production profile, configuration, installation and maintenance. Furthermore, the uncertainty due to cost figures assumptions restricted the results veracity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis focuses on using photovoltaic produced electricity to power air conditioners in a tropical climate. The study takes place in Surabaya, Indonesia at two different locations the classroom, located at the UBAYA campus and the home office, 10 km away. Indonesia has an average solar irradiation of about 4.8 kWh/m²/day (PWC Indonesia, 2013) which is for ideal conditions for these tests. At the home office, tests were conducted on different photovoltaic systems. A series of measuring devices recorded the performance of the 800 W PV system and the consumption of the 1.35 kW air conditioner (cooling capacity). To have an off grid system many of the components need to be oversized. The inverter has to be oversized to meet the startup load of the air conditioner, which can be 3 to 8 times the operating power (Rozenblat, 2013). High energy consumption of the air conditioner would require a large battery storage to provide one day of autonomy. The PV systems output must at least match the consumption of the air conditioner. A grid connect system provides a much better solution with the 800 W PV system providing 80 % of the 3.5 kWh load of the air conditioner, the other 20 % coming from the grid during periods of low irradiation. In this system the startup load is provided by the grid so the inverter does not need to be oversized. With the grid-connected system, the PV panel’s production does not need to match the consumption of the air conditioner, although a smaller PV array will mean a smaller percentage of the load will be covered by PV. Using the results from the home office tests and results from measurements made in the classroom. Two different PV systems (8 kW and 12 kW) were simulated to power both the current air conditioners (COP 2.78) and new air conditioners (COP 4.0). The payback period of the systems can vary greatly depending on if a feed in tariff is awarded or not. If the feed in tariff is awarded the best system is the 12 kW system, with a payback period of 4.3 years and a levelized cost of energy at -3,334 IDR/kWh. If the feed in tariff is not granted then the 8 kW system is the best choice with a lower payback period and lower levelized cost of energy than the 12 kW system under the same conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The demand for cooling and air-conditioning of building is increasingly ever growing. This increase is mostly due to population and economic growth in developing countries, and also desire for a higher quality of thermal comfort. Increase in the use of conventional cooling systems results in larger carbon footprint and more greenhouse gases considering their higher electricity consumption, and it occasionally creates peaks in electricity demand from power supply grid. Solar energy as a renewable energy source is an alternative to drive the cooling machines since the cooling load is generally high when solar radiation is high. This thesis examines the performance of PV/T solar collector manufactured by Solarus company in a solar cooling system for an office building in Dubai, New Delhi, Los Angeles and Cape Town. The study is carried out by analyzing climate data and the requirements for thermal comfort in office buildings. Cooling systems strongly depend on weather conditions and local climate. Cooling load of buildings depend on many parameters such as ambient temperature, indoor comfort temperature, solar gain to the building and internal gains including; number of occupant and electrical devices. The simulations were carried out by selecting a suitable thermally driven chiller and modeling it with PV/T solar collector in Polysun software. Fractional primary energy saving and solar fraction were introduced as key figures of the project to evaluate the performance of cooling system. Several parametric studies and simulations were determined according to PV/T aperture area and hot water storage tank volume. The fractional primary energy saving analysis revealed that thermally driven chillers, particularly adsorption chillers are not suitable to be utilizing in small size of solar cooling systems in hot and tropic climates such as Dubai and New Delhi. Adsorption chillers require more thermal energy to meet the cooling load in hot and dry climates. The adsorption chillers operate in their full capacity and in higher coefficient of performance when they run in a moderate climate since they can properly reject the exhaust heat. The simulation results also indicated that PV/T solar collector have higher efficiency in warmer climates, however it requires a larger size of PV/T collectors to supply the thermally driven chillers for providing cooling in hot climates. Therefore using an electrical chiller as backup gives much better results in terms of primary energy savings, since PV/T electrical production also can be used for backup electrical chiller in a net metering mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hybrid Photovoltaic Thermal (PVT) collectors are an emerging technology that combines PV and solar thermal systems in a single solar collector producing heat and electricity simultaneously. The focus of this thesis work is to evaluate the performance of unglazed open loop PVT air system integrated on a garage roof in Borlänge. As it is thought to have a significant potential for preheating ventilation of the building and improving the PV modules electrical efficiency. The performance evaluation is important to optimize the cooling strategy of the collector in order to enhance its electrical efficiency and maximize the production of thermal energy. The evaluation process involves monitoring the electrical and thermal energies for a certain period of time and investigating the cooling effect on the performance through controlling the air mass flow provided by a variable speed fan connected to the collector by an air distribution duct. The distribution duct transfers the heated outlet air from the collector to inside the building. The PVT air collector consists of 34 Solibro CIGS type PV modules (115 Wp for each module) which are roof integrated and have replaced the traditional roof material. The collector is oriented toward the south-west with a tilt of 29 ᵒ. The collector consists of 17 parallel air ducts formed between the PV modules and the insulated roof surface. Each air duct has a depth of 0.05 m, length of 2.38 m and width of 2.38 m. The air ducts are connected to each other through holes. The monitoring system is based on using T-type thermocouples to measure the relevant temperatures, air sensor to measure the air mass flow. These parameters are needed to calculate the thermal energy. The monitoring system contains also voltage dividers to measure the PV modules voltage and shunt resistance to measure the PV current, and AC energy meters which are needed to calculate the produced electrical energy. All signals recorded from the thermocouples, voltage dividers and shunt resistances are connected to data loggers. The strategy of cooling in this work was based on switching the fan on, only when the difference between the air duct temperature (under the middle of top of PV column) and the room temperature becomes higher than 5 °C. This strategy was effective in term of avoiding high electrical consumption by the fan, and it is recommended for further development. The temperature difference of 5 °C is the minimum value to compensate the heat losses in the collecting duct and distribution duct. The PVT air collector has an area of (Ac=32 m2), and air mass flow of 0.002 kg/s m2. The nominal output power of the collector is 4 kWppv (34 CIGS modules with 115 Wppvfor each module). The collector produces thermal output energy of 6.88 kWth/day (0.21 kWth/m2 day) and an electrical output energy of 13.46 kWhel/day (0.42 kWhel/m2 day) with cooling case. The PVT air collector has a daily thermal energy yield of 1.72 kWhth/kWppv, and a daily PV electrical energy yield of 3.36 kWhel /kWppv. The fan energy requirement in this case was 0.18 kWh/day which is very small compared to the electrical energy generated by the PV collector. The obtained thermal efficiency was 8 % which is small compared to the results reported in literature for PVT air collectors. The small thermal efficiency was due to small operating air mass flow. Therefore, the study suggests increasing the air mass flow by a factor of 25. The electrical efficiency was fluctuating around 14 %, which is higher than the theoretical efficiency of the PV modules, and this discrepancy was due to the poor method of recording the solar irradiance in the location. Due to shading effect, it was better to use more than one pyranometer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper focuses on the study of cascade heat pump systems in combination with solar thermal for the production of hot water and space heating in single family houses with relatively high heating demand. The system concept was developed by Ratiotherm GmbH and simulated with TRNSYS 17. The basic cascade system uses the heat pump and solar collectors in parallel operation while a further development is the inclusion of an intermediate store that enables the possibility of serial/parallel operation and the use of low temperature solar heat. Parametric studies in terms of compressor size, refrigerant pair and size of intermediate heat exchanger were carried out for the optimization of the basic system. The system configurations were simulated for the complete year and compared to a reference of a solar thermal system combined with an air source heat pump. The results show ~13% savings in electricity use for all three cascade systems compared to the reference. However, the complexity of the systems is different and thus higher capital costs are expected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vehicle activated signs (VAS) display a warning message when drivers exceed a particular threshold. VAS are often installed on local roads to display a warning message depending on the speed of the approaching vehicles. VAS are usually powered by electricity; however, battery and solar powered VAS are also commonplace. This thesis investigated devel-opment of an automatic trigger speed of vehicle activated signs in order to influence driver behaviour, the effect of which has been measured in terms of reduced mean speed and low standard deviation. A comprehen-sive understanding of the effectiveness of the trigger speed of the VAS on driver behaviour was established by systematically collecting data. Specif-ically, data on time of day, speed, length and direction of the vehicle have been collected for the purpose, using Doppler radar installed at the road. A data driven calibration method for the radar used in the experiment has also been developed and evaluated. Results indicate that trigger speed of the VAS had variable effect on driv-ers’ speed at different sites and at different times of the day. It is evident that the optimal trigger speed should be set near the 85th percentile speed, to be able to lower the standard deviation. In the case of battery and solar powered VAS, trigger speeds between the 50th and 85th per-centile offered the best compromise between safety and power consump-tion. Results also indicate that different classes of vehicles report differ-ences in mean speed and standard deviation; on a highway, the mean speed of cars differs slightly from the mean speed of trucks, whereas a significant difference was observed between the classes of vehicles on lo-cal roads. A differential trigger speed was therefore investigated for the sake of completion. A data driven approach using Random forest was found to be appropriate in predicting trigger speeds respective to types of vehicles and traffic conditions. The fact that the predicted trigger speed was found to be consistently around the 85th percentile speed justifies the choice of the automatic model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this article is to discuss the relations between regulation, competition policy and consumer protection these relations in three key sectors of Brazil’s infrastructure: telecommunications, electricity and water supply. A study of the literature points to two general principles. First, the need for consumer protection depends on the “degree of sovereignty” enjoyed by consumers, defined in terms of the cost of consumer organization, consumers’ ability to evaluate services, and the level of competition in each sector. Second, the less sovereignty consumers enjoy the more consumer protection institutions are involved with regulation agencies. The evidence for the Brazilian case apparently corroborates these points. In addition, it is important to stress that consumer complaints in regulated sectors seem to have increased more intensely than in others. The article is divided into three sections. Section 1 presents theoretical elements and aspects of the relations between regulation, competition policy and consumer protection evidenced by international experience. Section 2 analyzes the Brazilian experience and in particular the available statistics on consumer complaints about telecommunications, electricity and water supply, submitted to Fundação Procon-SP during the nineties. The last section points to possible configurations of the institutional relations between competition policy, regulation and consumer protection, showing how the existing configuration of these areas in the three infrastructure sectors discussed confirms that the theoretical framework proposed has reasonable predictive power.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper studies the electricity hourly load demand in the area covered by a utility situated in the southeast of Brazil. We propose a stochastic model which employs generalized long memory (by means of Gegenbauer processes) to model the seasonal behavior of the load. The model is proposed for sectional data, that is, each hour’s load is studied separately as a single series. This approach avoids modeling the intricate intra-day pattern (load profile) displayed by the load, which varies throughout days of the week and seasons. The forecasting performance of the model is compared with a SARIMA benchmark using the years of 1999 and 2000 as the out-of-sample. The model clearly outperforms the benchmark. We conclude for general long memory in the series.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper studies the electricity load demand behavior during the 2001 rationing period, which was implemented because of the Brazilian energetic crisis. The hourly data refers to a utility situated in the southeast of the country. We use the model proposed by Soares and Souza (2003), making use of generalized long memory to model the seasonal behavior of the load. The rationing period is shown to have imposed a structural break in the series, decreasing the load at about 20%. Even so, the forecast accuracy is decreased only marginally, and the forecasts rapidly readapt to the new situation. The forecast errors from this model also permit verifying the public response to pieces of information released regarding the crisis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work analyzes the entry problem in the hydroelectric generation industry. The operation of a generator upstream regularizes the river flow for generators located downstream on the same river, increasing the production capacity of the latter. This positive externality increases the attractiveness of the locations downstream whenever a generator decides to enter upstream. Therefore, the entry decision of a generator in a given location may affect all entry decisions in potential locations for plants downstream. I first model the problem of generators located in cascade on the same river to show the positive effect of the externality. Next, I develop a method to estimate an entry model specific to the hydro generation industry which takes into account the externality of the entry decisions. Finally, I use a data set on investment decisions of Brazilian hydro-generators to estimate the model. The results show a positive incentive to locate downstream from existing plants and from locations where entry is likely to occur. An interesting by-product of the analysis is that the year effects’ estimates show an increase one year before the energy crisis of 2001, providing evidence that the market anticipated the crisis. It contradicts the governmental version that the crisis was due to an unexpected drought.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses two key aspects regarding the efficiency of the Argentinean Electricity Market. Using hourly data on prices, marginal costs, and operational status of generators, it will be argued that, unlike the former British and Californian electricity spot markets, this market is not subject to the conventional forms of exercise of market power by generators. We then use Chao's (1983) model of optimal configuation of electricity supply to evaluate the social desirability of the change in the supply pattern of the Argentinean electricity industry, which took place throughout the last ten years.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O presente relatório, é o resultado do trabalho desenvolvido na unidade curricular de Estágio e Relatório do curso de Mestrado em Educação Pré-Escolar e 1º Ciclo de Ensino Básico. A componente de estágio teve lugar entre os meses de setembro e dezembro de 2012, com um total de 100h em cada uma das valências. A intervenção pedagógica em Pré-escolar decorreu na Escola Básica do 1º Ciclo com Pré-Escolar Eng. Luís Santos da Costa e, sendo que a de 1º Ciclo foi realizada na Escola Básica do 1º Ciclo com Pré-Escolar da Ajuda. Este trabalho encontra-se dividido em três partes, sendo que no primeira é feita uma abordagem teórica considerando autores e bibliografia de referência. As segunda e terceira, referem-se à intervenção educativa, nomeadamente aspetos referentes à contextualização de cada uma das valências, a abordagem às atividades e conteúdos desenvolvidos. Concluo o presente relatório com uma reflexão final expressando a minha opinião pessoal sobre a intervenção pedagógica bem como a contribuição desta para a minha formação pessoal, profissional e social.