943 resultados para Host Necrosis
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Host-fungal interactions are inherently complex and dynamic. In order to identify new microbial targets and develop more effective anti-fungal therapies, it is important to understand the cellular and molecular mechanisms of disease. Paracoccidioidomycosis provokes a variety of clinical symptoms, and Paracoccidioides brasiliensis can reach many tissues, but primarily attacks the lungs. The ability of the pathogen to interact with the host surface structures is essential to further colonization, invasion, and growth. Epithelial cells may represent the first host barrier or the preferential site of entry of the fungus. For this reason, interactions between P. brasiliensis and Vero/A549 epithelial cells were evaluated, with an emphasis on the adherence, induction of cytoskeletal alterations, and differential signaling activity of the various surface molecules. The adhesion to and invasion of epithelial cells by P. brasiliensis may represent strategies employed to thwart the initial host immune response, and may help in the subsequent dissemination of the pathogen throughout the body.
Surface-expressed enolase contributes to the adhesion of Paracoccidioides brasiliensis to host cells
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background: Laboratory studies of host-seeking olfactory behaviour in sandflies have largely been restricted to the American visceral leishmaniasis vector Lutzomyia longipalpis. In comparison, almost nothing is known about the chemical ecology of related species, which transmit American cutaneous leishmaniasis (ACL), due in part to difficulties in raising these insects in the laboratory. Understanding how ACL vectors locate their hosts will be essential to developing new vector control strategies to combat this debilitating disease.Methods: This study examined host-odour seeking behaviour of the ACL vector Nyssomyia neivai (Pinto) (=Lutzomyia neivai) using a wind tunnel olfactometer. The primary aim was to determine whether field-collected female N. neivai would respond to host odours in the laboratory, thereby eliminating the need to maintain colonies of these insects for behavioural experiments. Responses to two key host odour components, 1-octen-3-ol and lactic acid, and a commercially-available mosquito lure (BG-Lure (TM)) were assessed and compared relative to an air control. We also tested whether trials could be conducted outside of the normal evening activity period of N. neivai without impacting on fly behaviour, and whether the same flies could be used to assess baseline responses to air without affecting responses to octenol, thereby reducing the number of flies required for experiments.Results: Octenol was found to both activate host-seeking behaviour and attract female N. neivai in the wind tunnel, while lactic acid elicited weaker responses of activation and attractiveness under identical conditions. The BG-Lure did not activate or attract N. neivai under test conditions. Further experiments showed that sandfly behaviour in the wind tunnel was not affected by time of day, such that experiments need not be restricted to nocturnal hours. Moreover, using the same flies to measure both baseline responses to air and attraction to test compounds did not affect odour-seeking behaviour.Conclusions: The results of this study demonstrate that N. neivai taken from the field are suitable for use in laboratory olfactometer experiments. It is hoped this work will facilitate further research into chemical ecology of this species, and other ACL vectors.
Resumo:
In this study, the effect of Yersinia derivatives on nitric oxide (NO), hydrogen peroxide (H2O2) and tumor necrosis factor-alpha (TNF-alpha) production by murine peritoneal macrophages was investigated. Addition of lipopolysaccharide (LPS) to the macrophage culture resulted in NO production that was dose dependent. on the other hand, bacterial cellular extract (CE) and Yersinia outer proteins (Yops) had no effect on NO production. The possible inhibitory effect of Yops on macrophage cultures stimulated with LPS was investigated. Yops partially inhibited NO production (67.4%) when compared with aminoguanidine. The effects of Yersinia derivatives on H2O2 production by macrophages were similar to those on NO production. LPS was the only derivative that stimulated H2O2 release in a dose-dependent manner. All Yersinia derivatives provoked the production of TNF-alpha, but LPS had the strongest effect, as observed for NO production. CE and Yops stimulated TNF-alpha production to a lesser extent than LPS. The results indicate the possibility that in vivo Yops may aid the evasion of the bacteria from the host defense mechanism by impairing the secretion of NO by macrophages. (C) 2003 Elsevier SAS. All rights reserved.
Resumo:
Most of our knowledge concerning the virulence determinants of pathogenic fungi comes from the infected host, mainly from animal models and more recently from in vitro studies with cell cultures. The fungi usually present intra- and/or extracellular host-parasite interfaces, with the parasitism phenomenon dependent on complementary surface molecules. Among living organisms, this has been characterized as a cohabitation event, where the fungus is able to recognize specific host tissues acting as an attractant, creating stable conditions for its survival. Several fungi pathogenic for humans and animals have evolved special strategies to deliver elements to their cellular targets that may be relevant to their pathogenicity. Most of these pathogens express surface factors that mediate binding to host cells either directly or indirectly, in the latter case binding to host adhesion components such as extracellular matrix (ECM) proteins, which act as 'interlinking' molecules. The entry of the pathogen into the host cell is initiated by fungal adherence to the cell surface, which generates an uptake signal that may induce its cytoplasmic internalization. Once this is accomplished, some fungi are able to alter the host cytoskeletal architecture, as manifested by a rearrangement of microtubule and microfilament proteins, and this can also induce epithelial host cells to become apoptotic. It is possible that fungal pathogens induce modulation of different host cell pathways in order to evade host defences and to foster their own proliferation. For a number of pathogens, the ability to bind ECM glycoproteins, the capability of internalization and the induction of apoptosis are considered important factors in virulence. Furthermore, specific recognition between fungal parasites and their host cell targets may be mediated by the interaction of carbohydrate-binding proteins, e.g., lectins on the surface of one type of cell, probably a parasite, that combine with complementary sugars on the surface of host-cell. These interactions supply precise models to study putative adhesins and receptor-containing molecules in the context of the fungus-host interface. The recognition of the host molecules by fungi such as Aspergillus fumigatus, Paracoccidioides brasiliensis and Histoplasma capsulatum, and their molecular mechanisms of adhesion and invasion, are reviewed in this paper.
Resumo:
The role of cell-wall compounds in the immune response to sporotrichosis is unknown. The effect of cell-wall compounds and exoantigen obtained from Sporothrix schenckii in macrophage/fungus interaction was analysed with respect to nitric oxide (NO) and tumour necrosis factor-alpha (TNF-alpha). The lipid compound of the cell wall plays an important role in the pathogenesis of this mycosis and was found to inhibit the phagocytic process and to induce high liberation of NO and TNF-alpha in macrophage cultures in the present study. This is a very interesting result because it is the first report about one compound of the fungus S. schenckii that presents this activity.
Resumo:
Paracoccidioides brasiliensis (Pb) yeast cells can enter mammalian cells and probably manipulate the host cell environment to favor their own growth and survival. We studied the uptake of strain Pb 18 into A549 lung and Vero epithelial cells, with an emphasis on the repercussions in the cytoskeleton and the apoptosis of host cells. Cytoskeleton components of the host cells, such as actin and tubulin, were involved in the P. brasiliensis invasion process. Cytochalasin D and colchicine treatment substantially reduced invasion, indicating the functional participation of microfilaments (MFs) and microtubules (MTs) in this mechanism. Cytokeratin could also play a role in the P. brasiliensis interaction with the host. Gp43 was recognized by anti-actin and anti-cytokeratin antibodies, but not by anti-tubulin. The apoptosis induced by this fungus in infected epithelial cells was demonstrated by various techniques: TUNEL, DNA fragmentation and Bak and Bcl-2 immunocytochemical expression. DNA fragmentation was observed in infected cells but not in uninfected ones, by both TUNEL and gel electrophoresis methods. Moreover, Bcl-2 and Bak did not show any differences until 24 h after infection of cells, suggesting a competitive mechanism that allows persistence of infection. Overexpression of Bak was observed after 48 h, indicating the loss of competition between death and survival signals. In conclusion, the mechanisms of invasion of host cells, persistence within them, and the subsequent induction of apoptosis of such cells may explain the efficient dissemination of P. brasiliensis. (C) 2004 Published by Elsevier SAS.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Periodontal disease is an infection initiated by oral periodontal pathogens that trigger an immune response culminating in tissue destruction. This destruction is mediated by the host by inducing the production and activation of lytic enzymes, cytokines and the stimulation of osteoclastogenesis. The aim of this study was to compare the immunohistochemical expression of factors involved in bone resorption, RANKL (Ligand Receptor Activator of Nuclear Factor kappa B), OPG (Osteoprotegerin) and TNF-α (tumor necrosis factor alpha) between the gingival healthy, gingivitis and chronic periodontitis and correlate them with clinical parameters. The sample consisted of 83 cases and 12 clinically healthy gums, 42 gingivitis and 29 periodontitis, from 74 adolescent and adult patients with a mean age of 35 years, without systemic changes and non-smokers, predominantly female and race brown. There was no statistically significant difference for the expression of anti-RANKL (p = 0.581) and RANKL / OPG ratio (p = 0.334) when comparing the three conditions, but the anti-OPG and anti-TNF-α showed statistically significant between the types of injury (p = 0.001 and p <0.001, respectively), showing greatest expression in periodontitis. In cases of periodontitis, the variable clinical attachment loss (PIC) was statistically significant and positive correlation, respectively, with immunostaining of anti-RANKL (p = 0.002, p = 0.001 and r = 0.642), anti-OPG (p = 0.018, p = 0.014 and r = 0.451), anti-TNF-α (p = 0.032, p = 0.014 and r = 0.453) and the percentage ratio of RANKL / OPG (p = 0.018, p = 0.002 and r = 0.544). The tooth mobility (MB) showed a statistically significant difference only with immunohistochemical anti-RANKL (p = 0.026), and probing depth (PD) was positively correlated with anti-RANKL (p = 0.028 and r = 0.409), both in cases of periodontitis. Only in cases of gingivitis TNF-α was positively correlated with RANKL (p = 0.012 and r = 0.384) and the RANKL / OPG ratio (p = 0.027 and r = 0.341). Given these results, we conclude that the greatest expression of TNF-α in periodontitis demonstrates a relationship with the progression and severity of periodontal disease and the correlation between all antibodies and clinical attachment loss demonstrates their involvement in periodontal bone resorption
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)