959 resultados para Horde family (John Hord, d. 1747)
Resumo:
Burkholderia cenocepacia is a Gram-negative opportunistic pathogen of patients with cystic fibrosis and chronic granulomatous disease. The bacterium survives intracellularly in macrophages within a membrane-bound vacuole (BcCV) that precludes the fusion with lysosomes. The underlying cellular mechanisms and bacterial molecules mediating these phenotypes are unknown. Here, we show that intracellular B. cenocepacia expressing a type VI secretion system (T6SS) affects the activation of the Rac1 and Cdc42 RhoGTPase by reducing the cellular pool of GTP-bound Rac1 and Cdc42. The T6SS also increases the cellular pool of GTP-bound RhoA and decreases cofilin activity. These effects lead to abnormal actin polymerization causing collapse of lamellipodia and failure to retract the uropod. The T6SS also prevents the recruitment of soluble subunits of the NADPH oxidase complex including Rac1 to the BcCV membrane, but is not involved in the BcCV maturation arrest. Therefore, T6SS-mediated deregulation of Rho family GTPases is a common mechanism linking disruption of the actin cytoskeleton and delayed NADPH oxidase activation in macrophages infected with B. cenocepacia.
Resumo:
The intermediate steps in the biosynthesis of the ADP-L-glycero-D-manno-heptose precursor of inner core lipopolysaccharide (LPS) are not yet elucidated. We isolated a mini-Tn10 insertion that confers a heptoseless LPS phenotype in the chromosome of Escherichia coli K-12. The mutation was in a gene homologous to the previously reported rfaE gene from Haemophilus influenzae. The E. coli rfaE gene was cloned into an expression vector, and an in vitro transcription-translation experiment revealed a polypeptide of approximately 55 kDa in mass. Comparisons of the predicted amino acid sequence with other proteins in the database showed the presence of two clearly separate domains. Domain I (amino acids 1 to 318) shared structural features with members of the ribokinase family, while Domain II (amino acids 344 to 477) had conserved features of the cytidylyltransferase superfamily that includes the aut gene product of Ralstonia eutrophus. Each domain was expressed individually, demonstrating that only Domain I could complement the rfaE::Tn10 mutation in E. coli, as well as the rfaE543 mutation of Salmonella enterica SL1102. DNA sequencing of the rfaE543 gene revealed that Domain I had one amino acid substitution and a 12-bp in-frame deletion resulting in the loss of four amino acids, while Domain II remained intact. We also demonstrated that the aut::Tn5 mutation in R. eutrophus is associated with heptoseless LPS, and this phenotype was restored following the introduction of a plasmid expressing the E. coli Domain II. Thus, both domains of rfaE are functionally different and genetically separable confirming that the encoded protein is bifunctional. We propose that Domain I is involved in the synthesis of D-glycero-D-manno-heptose 1-phosphate, whereas Domain II catalyzes the ADP transfer to form ADP-D-glycero-D-manno-heptose.
Resumo:
Family caregivers of patients requiring palliative care commonly experience physical, social, and psychological burdens. Although family caregivers are acknowledged as valid service recipients of palliative care, many have unmet needs, and systematic reviews have shown there are limited evidence-based supportive interventions.
Resumo:
Support for family caregivers, including bereavement follow-up, is a core function of palliative care. Many caregivers acknowledge positive aspects associated with the role; however a considerable proportion will experience poor psychological, social, financial, spiritual, and physical well-being and some will suffer from complicated grief. Many family caregivers have unmet needs and would like more information, preparation, and support to assist them in the caregiving role. There is a shortage of evidence-based strategies to guide health professionals in providing optimal support while the caregiver is providing care and after the patient's death.
Resumo:
Dysfunction of lipid-metabolizing proteins is implicated in the pathogenesis of coronary artery disease. Single nucleotide polymorphisms in genes that encode sterol regulatory binding protein-la, adenosine triphosphate binding cassette-A1, hepatic lipase, lipoprotein lipase, and cholesteryl ester transfer protein were assessed as potential markers of disease susceptibility in a family-based study of 1,012 patients from 386 families. Association between single nucleotide polymorphisms and coronary artery disease was tested by the combined transmission disequilibrium test/sib transmission disequilibrium test and pedigree disequilibrium test. After Bonferroni's correction, the pedigree disequilibrium test demonstrated significant excess transmission (p < 0.0083) to affected patients of the hepatic lipase -514 T allele, which suggests that this may constitute a novel disease-susceptibility locus. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Helminth parasites (nematodes, flatworms and cestodes) infect over 1 billion of the world's population causing high morbidity and mortality. The large tissue-dwelling worms express papain-like cysteine peptidases, termed cathepsins that play important roles in virulence including host entry, tissue migration and the suppression of host immune responses. Much of our knowledge of helminth cathepsins comes from studies using flatworms or trematode (fluke) parasites. The developmentally-regulated expression of these proteases correlates with the passage of parasites through host tissues and their encounters with different host macromolecules. Recent phylogenetic, biochemical and structural studies indicate that trematode cathepsins exhibit overlapping but distinct substrate specificities due to divergence within the protease active site. Here we provide an overview of the evolution, biochemistry and structure of these important enzymes and highlight how recent advances in proteomics and gene silencing techniques are allowing researchers to probe their biological functions. We focus mainly on members of the cathepsin L gene family of the animal and human pathogen, Fasciola hepatica, because of our deep understanding of their function, biochemistry and structure.
Resumo:
Helminth pathogens express papain-like cysteine peptidases, termed cathepsins, which have important roles in virulence, including host entry, tissue migration and the suppression of host immune responses. The liver fluke Fasciola hepatica, an emerging human pathogen, expresses the largest cathepsin L cysteine protease family yet described. Recent phylogenetic, biochemical and structural studies indicate that this family contains five separate clades, which exhibit overlapping but distinct substrate specificities created by a process of gene duplication followed by subtle residue divergence within the protease active site. The developmentally regulated expression of these proteases correlates with the passage of the parasite through host tissues and its encounters with different host macromolecules.
Resumo:
Cathepsin L proteases secreted by the helminth pathogen Fasciola hepatica have functions in parasite virulence including tissue invasion and suppression of host immune responses. Using proteomics methods alongside phylogenetic studies we characterized the profile of cathepsin L proteases secreted by adult F. hepatica and hence identified those involved in host-pathogen interaction. Phylogenetic analyses showed that the Fasciola cathepsin L gene family expanded by a series of gene duplications followed by divergence that gave rise to three clades associated with mature adult worms (Clades 1, 2, and 5) and two clades specific to infective juvenile stages (Clades 3 and 4). Consistent with these observations our proteomics studies identified representatives from Clades 1, 2, and 5 but not from Clades 3 and 4 in adult F. hepatica secretory products. Clades 1 and 2 account for 67.39 and 27.63% of total secreted cathepsin Ls, respectively, suggesting that their expansion was positively driven and that these proteases are most critical for parasite survival and adaptation. Sequence comparison studies revealed that the expansion of cathepsin Ls by gene duplication was followed by residue changes in the S2 pocket of the active site. Our biochemical studies showed that these changes result in alterations in substrate binding and suggested that the divergence of the cathepsin L family produced a repertoire of enzymes with overlapping and complementary substrate specificities that could cleave host macromolecules more efficiently. Although the cathepsin Ls are produced as zymogens containing a prosegment and mature domain, all secreted enzymes identified by MS were processed to mature active enzymes. The prosegment region was highly conserved between the clades except at the boundary of prosegment and mature enzyme. Despite the lack of conservation at this section, sites for exogenous cleavage by asparaginyl endopeptidases and a Leu-Ser[downward arrow]His motif for autocatalytic cleavage by cathepsin Ls were preserved.
Resumo:
Adoption policy in the UK emphasizes its role in providing secure, permanent relationships to children in care who are unable to live with their birth families. Adoptive parents are crucial in providing this life-long, stable experience of family for these vulnerable children. This paper explores the experience of adoptive parenthood in the context of changes to adoptive kinship relationships brought about by new, unplanned contact with birth family during their child's middle adolescence. This contact was initiated via informal social networks and/or social media, with older birth siblings instrumental in negotiating renewed relationships. The contact precipitated a transition in adoptive family life resulting in emotional challenges and changes in parent/child relationships, which were experienced as additional to the normative transitions expected during adolescence. Parental concern as a dominant theme was founded in the child and birth sibling's stage of adolescence, coupled with constraints on adoptive parenthood imposed by the use of social media, by perceived professional attitudes and by parental social cognitions about the importance of birth ties. Adoptive parents' accounts are interpreted with reference to family life-cycle theory and implications are suggested for professional support of adoptive kinship relationships.
Resumo:
This paper presents an analytical model for the prediction of the elastic behaviour of plain-weave fabric composites. The fabric is a hybrid plain-weave with different materials and undulations in the warp and weft directions. The derivation of the effective material properties is based on classical laminate theory (CLT).
The theoretical predictions have been compared with experimental results and predictions using alternative models available in the literature. Composite laminates were manufactured using the resin infusion under flexible tooling (RIFT) process and tested under tension and in-plane shear loading to validate the model. A good correlation between theoretical and experimental results for the prediction of in-plane properties was obtained. The limitations of the existing theoretical models based on classical laminate theory (CLT) for predicting the out-of-plane mechanical properties are presented and discussed.