992 resultados para Heavy Ions
Resumo:
Photonic crystals (PC) have received extensive attention for the photonic band gap (PBG). The polystyrene (PS) particles bottom-up approach is a productive method for photonic crystal manufacture, this kind of photonic crystals having an unique PBG that depends on the particle's shape, sizes and defects. Heavy ion irradiation is a very useful method to induce defects in PC and change the shapes of the particles to tune the PBG. MeV heavy ion irradiation leads to an anisotropic deformation of the particles from spherical to ellipsoidal, the aspect ratio of which can be precisely controlled by using the ion energy and flux. Sub-micrometer PS particles were deposited on a Cu substrate and were irradiated at 230 K by using heavy ion energy and fluence in the range from 2 to 10 MeV and 1 x 10(14) cm(-2) to 1 x 10(15) cm(-2); respectively.
Resumo:
Photonic crystals (PC) have received extensive attention for the photonic band gap (PBG). The polystyrene (PS) particles bottom-up approach is a productive method for photonic crystal manufacture, this kind of photonic crystals having an unique PBG that depends on the particle's shape, sizes and defects. Heavy ion irradiation is a very useful method to induce defects in PC and change the shapes of the particles to tune the PBG. MeV heavy ion irradiation leads to an anisotropic deformation of the particles from spherical to ellipsoidal, the aspect ratio of which can be precisely controlled by using the ion energy and flux. Sub-micrometer PS particles were deposited on a Cu substrate and were irradiated at 230 K by using heavy ion energy and fluence in the range from 2 to 10 MeV and 1 x 10(14) cm(-2) to 1 x 10(15) cm(-2); respectively.
Resumo:
Ni/SiO2 interface were irradiated at room temperature with 308 MeV Xe ions to 1×1012,5×1012 Xe/cm2 and 853 MeV Pb ions to 5×1011 Pb/cm2,respectively.These samples were analyzed using Rutherford Backscattering Spectrometry(RBS) and X-ray diffraction spectroscopy(XRD),from which the intermixing and phase change were investigated.The obtained results show that both Xe-and Pb-ions could induce diffusion of Ni atoms to SiO2 substrates and result in intermixing of Ni with SiO2.Furthermore,1.0×1012 Xe/cm2 irradiat...中文摘要:在室温下用308 MeV的Xe离子和853 MeV的Pb离子辐照Ni/SiO2样品,用卢瑟福背散射和X射线衍射技术对样品进行了分析。通过分析Ni/SiO2样品中元素成分分布和结构随离子辐照剂量和电子能损的变化,探索了离子辐照在Ni/SiO2样品中引起的界面原子混合与结构相变现象。实验结果显示,Xe和Pb离子辐照均能引起明显的Ni原子向SiO2基体的扩散并导致界面附近Ni,Si和O原子的混合。实验观测到低剂量Xe离子辐照可产生NiSi2相,而高剂量Xe离子辐照则导致了Ni3Si和NiO相的形成。根据热峰模型,Ni原子的扩散和新相的形成可能由沿离子入射路径强电子激发引起的瞬间热峰过程驱动。
Resumo:
Surface damage of gallium nitride films irradiated by Arq+ (6 ≤ q ≤ 16) ions at room temperature is studied by the atomic force microscopy. It is found that when charge state exceeds a threshold value, significant swelling was turned into obvious erosion in the irradiated region. The surface change of the irradiated region strongly depends on the charge state and ion fluence. On the other hand, surface change is less dependent on the kinetic energy nearly in the present experimental range (120 keV≤ Ek ≤ 220 keV). For q ≤ 14, surface of the irradiated region iscovered with an amorphous layer, rough and bulgy. A step-up appears between the irradiated and un-irradiated region. Moreover, the step height and the surface roughness are functions of the ion dose and charge state...
Resumo:
Low-activation Ferritic/Martensitic steels are a kind of important structural materials candidate to the application in advanced nuclear energy systems.Possible degradation of properties and even failure in the condition of high-temperature and high helium production due to energetic neutron irradiation in a fusion reactor is a major concern with the application of this kind of materials.In the present work microstructural evolution in a 9Cr Ferritic/Martensitic steel(T92B) irradiated with 122 MeV 20Ne ions...中文摘要:低活化的铁素体/马氏体钢是先进核能装置(如聚变堆)的重要候选结构材料。在聚变堆实际工作环境下,由于高温和高氦产生率引起的材料失效是这类材料面临的一个重要问题。本项研究以兰州重离子加速器(HIRFL)提供的中能惰性气体离子束(20Ne,122 MeV)作为模拟辐照条件,借助透射电子显微镜,研究了一种低活化的9Cr铁素体/马氏体钢(T92B)组织结构的变化和辐照肿胀。实验结果表明,高温下当材料中晶格原子的撞出损伤和惰性气体原子沉积浓度超过一定限值时,材料内部形成高浓度的空洞,并且空洞肿胀率显著依赖于辐照温度和剂量;在马氏体板条界面及其它晶界处空洞趋于优先形成,并且在晶界交汇处呈加速生长。基于氦泡的形核生长与空洞肿胀的经典模型探讨了在不同辐照条件(He离子、Ne离子、Fe/He离子双束、快中子、Ni离子)下铁素体/马氏体钢中肿胀率数据的关联。
Resumo:
Irradiation efect in three carbon allotropes C60, diamond and highly oriented pyrolytic graphite (HOPG) induced by 170 keV B ions, mainly including the process of the damage creation, is investigated by means of Raman spectroscopy technique. The diferences on irradiation sensitivity and structural stability for C60, HOPG and diamond are compared. The analysis results indicate that C60 is the most sensitive for B ions irradiation,diamond is the second one and the structure of HOPG is the most stable under B ion irradiation. The damage cross sections ? of C60, diamond and HOPG deduced from the Raman spectra are 7.78×10−15 , 6.38×10−15 and1.31 × 10−15cm2, respectively.
Resumo:
Angular distribution and current dependence of the transmitted ion fraction are investigated for 40 keV Xe7+ bombarding on polycarbonate (PC) nanocapillaries. By measuring the angular distribution of the transmitted ion fraction, a strong guiding efect is found in PC nanocapillaries. Furthermore, with increase of the incident current, a turning point of the transmitted ion fraction is found, which is explained qualitatively by the discharge capacity of the nanocapillaries.
Resumo:
Since the successful completion of the cooling storage ring (CSR) project in China at the end of 2007, high qualitative heavy ion beams with energy ranging from keV to GeV/u have been available at the Heavy Ion Research Facility at Lanzhou (HIRFL). More than 1091 GeV/u C6+particles or 108235 MeV/u Xe particles can be stored in the CSR main-ring and extracted within hundred nano-seconds during the test running,the beam parameters will be improved in the coming years so that high energy density (HED) conditions could be achieved and investigated there. Recent scientific results from the experiments relevant to plasma research on HIRFL are summarized. Dense plasma research with intense heavy ion beams of CSR is proposed here.
Resumo:
Within the framework of a dinuclear system (DNS) model, the evaporation-residue excitation functions and the quasi-fission mass yields in the 48Ca induced fusion reactions are investigated systematically and compared with available experimental data. Maximal production cross sections of superheavy nuclei based on stable actinide targets are obtained. Isotopic trends in the production of the superheavy elements Z = 110, 112–118 based on the actinide isotopic targets are analyzed systematically. Optimal evaporation channels and combinations as well as the corresponding excitation energies are proposed. The possible factors that influencing the isotopic dependence of the production cross sections are analyzed. The formation of the superheavy nuclei based on the isotopes U with different projectiles are also investigated and calculated.