959 resultados para HPLC-PAD
Resumo:
作者所在的课题组,自1998年以来从胶州湾海泥中陆续分离了800株海洋放线菌,并从4株放线菌中分离出了12个新结构活性化合物。选择产生新颖抗肿瘤抗生素的海洋放线菌M045和M048,产全霉素的海洋放线菌M095和产蒽醌类化合物的海洋放线菌M097为研究材料,建立了海洋放线菌的遗传转化体系,为海洋放线菌的遗传工程操作及天然化合物组合生物合成奠定了基础。 (1)通过接合转移建立了菌株M045的遗传转化体系。用来源于蓝藻Anacystis nidulans UTEX625的别藻蓝蛋白基因验证了转化体系的有效性。通过PCR及基因组步移方法获得长度为1709bp的部分聚酮合成酶(PKS)基因,分析其同放射菌素基因具有同源性,利用基因中断插入失活该基因,但未获得突变株。因此尝试通过反向遗传学方法,克隆该菌株中新骨架抗肿瘤抗生素——中国霉素的生物合成基因簇,本研究已经构建了该菌株Fosmid基因组文库,对基因组文库的筛选工作正在进行中。 (2)利用PEG-介导的质粒pIJ702转化原生质体和接合转移两种方法均成功获得菌株M048的转化子,其中接合转移率高达10-4。菌株M048来源于高盐的海洋环境,维持原生质体所需渗透压与模式菌株—变铅青链霉菌(Streptomyces lividans)有很大差异,本研究对菌株M048原生质体形成和再生的各种因素进行了优化,获得了渗透压稳定剂蔗糖最佳浓度为0.4M。 质粒pIJ8600整合于菌株M048染色体上,对该转化株的抑菌活性、薄层层析(TLC)以及HPLC-MS进行了分析。结果表明,同野生菌株相比,该转化株对7种受试菌的抑菌活性显著增强,TLC显示差异的化合物条带,HPLC-MS显示化合物组分有差异。因此质粒pIJ8600的整合,引起菌株次级代谢产物生物合成途径的改变,使有抑菌活性的化合物大量累积。 从菌株M048染色体上克隆获得了1196bp的部分PKS基因,通过基因中断插入失活该基因,结果显示M048突变株次级代谢产物抑菌活性增强,HPLC分析发现显著差异。初步分析该PKS基因的中断使菌株体内某些生物合成途径受阻,而大量合成抗菌活性强的chandrananimycin C,或者产生了抑菌活性强的其它化合物。 (3)本研究成功建立了菌株M095的接合转移体系。M095/pIJ8600转化株的生物学活性分析并未发现差异,表明该菌株染色体上的整合位点(attB)是中性(neutral)的。通过PCR以及基因组步移的方法克隆获得了该菌株的部分糖基转移酶基因,该基因中断突变株对4株受试菌的抑菌活性增强,HPLC显示有差异,表明该糖基转移酶基因参与了菌株M095活性次级代谢产物的生物合成过程。 (4)对于菌株M097,用接合转移法成功获得了转化子。实现了别藻蓝蛋白基因的重组表达,并纯化了表达产物,体外试验表明其具有清除羟基自由基能力。结果表明来源于蓝藻的外源基因可以在海洋放线菌体内有效表达和正确折叠,初步验证了本研究所建立的海洋放线菌遗传转化体系的稳定性及有效性。对M097/pIJ8600转化株的生物学活性分析,未发现差异,表明该菌株染色体上的整合位点是中性的。 本论文首次将基因工程技术引入四株海洋放线菌,建立了海洋放线菌自身的基因转移系统,为利用基因工程技术改造海洋放线菌的天然化合物生物合成途径提供了方法。对部分PKS基因中断突变株的生物学活性及化学分析,初步揭示了通过遗传转化方法进行化合物组合生物合成的可行性。
Resumo:
有机锡化合物被广泛用作塑料制品中的稳定剂、船舶油漆的防污剂、工业催化剂、农林业杀虫杀菌剂以及用于木材的防腐保存等,已经引起严重的环境污染。世界上许多国家纷纷制定相应的法规对其使用加以禁止或限制。我国目前还没有明确的限制有机锡使用的法律法规,缺少有机锡污染的第一手资料,更没有长期的控制、监测与研究计划。由于有机锡的种类繁多,理化性质存在差别,所以在提取、分离和测定中均存在较大的困难。从我国这方面己有的工作来看,缺乏各种高选择性的分离方法和高灵敏度的检测方法是制约这项研究广泛开展的原因之一。有机锡的痕量与超痕量分析技术是当今环境和食品安全分析领域的前沿技术。 本论文利用高效液相色谱和电感耦合等离子体质谱联用技术建立了海洋环境中多种有机化合物的同时快速检测方法;发展了多种海洋环境样品中有机锡的前处理技术;研究了有机锡在海洋生物中的分布、代谢及降解过程中化学形态的变化;同时发展了海洋环境中多种痕量元素的快速检测方法。所建立的高效液相色谱和电感耦合等离子体质谱联用技术可同时、快速分析5种有机锡的形态(三甲基锡TMT、二苯基锡DPhT、二丁基锡DBT、三丁基锡TBT和三苯基锡TPhT),其检出限均低于0.3μg/L。 用所建立方法对南海海洋生物样品中的有机锡污染进行了研究,利用SPSS软件对检测结果进行了探讨,发现在所研究海洋生物样品的97.2%中可检出丁基锡和苯基锡化合物,其浓度分布处于该化合物检出限~1487.8ng/g范围内。其中,贝类样品中总有机锡的平均浓度为416.9ng/g,远远高于鱼类样品中总有机锡的平均浓度(211.9ng/g)。海洋生物中存在高浓度的有机锡说明本海域有机锡污染严重,已经对生态环境造成了严重影响,危害到人类生活。其主要的污染源是防污涂料的应用,目前紧迫的问题是采取必要的措施来控制有机锡的使用。 本工作建立了海水样品和沉积物样品中五种有机锡的简单快速萃取方法。采用加入2%的环庚三烯酚(tropolone)的二氯甲烷CH2Cl2对海水中的有机锡进行萃取,大大提高了有机锡的萃取率,减少了萃取的时间,二苯基锡(DPhT)、二丁基锡(DBT)、三丁基锡(TBT)和三苯基锡(TPhT)的萃取率均在80%以上,仅三甲基锡(TMT)的萃取率较低(在50%左右),究其原因,可能是因为在萃取的过程中三甲基锡(TMT)产生了降解。采用流动相和0.2%环庚三烯酚酮(tropolone)对沉积物国际标准物质PACS-2进行超声萃取及高速离心后,用所建方法进行了分析。结果表明,测定值与标准值吻合。研究表明,所建立的方法可用于实际环境沉积物中有机锡的形态分析。 本文建立了流动注射与电感耦合等离子体质谱联用技术直接同时测定海水中多种痕量元素的方法。该方法采用痕量进样技术,能够有效地减少海水中Na,Mg, Ca和Cl等大量基体元素对待测痕量元素测定的干扰,减少这些元素在电感耦合等离子体采样锥上的盐沉积,可以同时测量海水中的V、Cr、Mn、Fe、Co、Ni、Cu、Zn、As、Mo、Cd、Pb,Hg和U等痕量级元素。用所建的方法测定南海海域海水中的重金属元素,发现Cd,Cr,As等有毒有害元素的污染很轻,均符合Ⅰ级海水的限量。 在海洋沉积物样品处理研究中,本工作改进了不需要赶走HF酸就可以对沉积物消解完全的密闭容器消解法,由于减少了赶走HF酸的步骤,使消解的时间由原来的二十个小时降低为十个小时,大大降低了消解的时间。采用该样品消解方法,并用ICP-MS测定了南黄海海域沉积物中锡及其他重金属元素的含量。建立了微波消解-ICP-MS测定海洋生物中锡、砷、镉、汞及铅等有害重金属元素的分析方法,并用于南黄海7个及南海海域29个海产品中的测定。测定结果表明海洋生物中上述有毒有害元素有不同程度的超标问题;不同种类,不同产地的海洋生物中重金属元素的含量有一定的差别,这些研究结果为海产品安全质量控制提供了有价值的科学信息。 在上述各章工作的基础上,本文研究了有机锡在海洋生物中的分布、代谢及降解过程,并初步建立了高效液相-电喷雾-飞行时间质谱(LC-APCI-TOF-MS)测定有机锡的方法,可对未知的有机锡化合物进行结构表征。有机锡在贝类中不同的组织显示,其内脏中有机锡的含量高于肌肉中有机锡含量。常规的煮、炸、蒸及微波的烹饪方式并不能降解海产品中的有机锡化合物。
Resumo:
本论文对两种红树林植物海漆 (Excoecaria agallocha L.) 和海桑(Sonneratia caseolaris L.)的化学成分进行了系统研究。 采用常规的硅胶柱层析、制备薄层层析、凝胶 Sephadex LH-20 柱层析、MCI柱层析、反相硅胶柱层析、半制备型 HPLC 以及重结晶等手段,从海漆 (Excoecaria agalloch L. ) 中分离得到 40 个化合物,从海桑(Sonneratia caseolaris L.)中分离得到 30 个化合物。利用各种现代波谱技术 (IR、UV、ESI-MS、EI-MS、1D-NMR、2D-NMR等) 及其化学物理性质,确定了海漆中 32 个化合物的结构,其中包括 1 个新的三萜天然产物以及 15 个首次从海漆中报道的化合物;确定了海桑中 27 个化合物的结构,其中包括 1 个新化合物和一个首次报道其碳谱数据的化合物。本文为首次报道海桑的化学成分研究。 对海漆和海桑粗提物及分离得到的部分化合物进行了抗肝癌细胞毒活性筛选,化合物S22表现出较强活性,其IC50为2.8 μg/mL;海漆和海桑粗提物及其它部分单体化合物只表现出微弱活性;阳性对照丝裂霉素C的IC50为1.1 μg/mL。 对分离得到的部分样品还进行了抗菌活性测试,各样品在测试浓度下对测试菌均未表现出明显的抗菌活性。 首次研究了海漆挥发性成分及其季节性变化。利用水蒸汽法提取了不同季节海漆的挥发性成分,通过GC-MS鉴定其化学组成,发现脂肪酸、二萜和倍半萜是海漆挥发性成分的主要组成,不同季节的挥发性成分差异较大。
Resumo:
海洋微生物拥有丰富多样的次生代谢途径,其中海洋生物内生真菌次生代谢产物研究日益受到天然产物化学界的重视。本论文以菌丝体生物量、发酵产物重量、抗菌与细胞毒活性、薄层色谱分析结果以及高效液相色谱分析结果等为评价依据对采自青岛沿海的13株海藻内生真菌在四种液体培养基上的静置发酵产物进行了综合评价,并从中选择了黑曲霉Aspergillus niger EN-13(分离自褐藻囊藻Colpomenia sinuosa)和杂色曲霉A. versicolor EN-7(分离自褐藻鼠尾藻Sargassum thunbergii)两株真菌进行了30升规模发酵(分别采用GPYM培养基和PDB培养)和化学成分的研究,对分离得到的大部分化合物进行了初步的生物活性筛选。 发酵提取物采用常规的硅胶柱层析、反相硅胶柱层析,凝胶Sephadex LH-20柱层析、制备薄层层析、半制备高效液相色谱以及重结晶等分离手段,得到单体化合物。利用各种现代波谱技术(IR、UV、EI-MS、FAB-MS、HR-ESI-MS、1H-NMR、13C-NMR、DEPT、1H-1H COSY、HSQC、HMBC等)并结合化学方法从两种菌株发酵提取物中鉴定了55个化合物的结构。其中从菌株A. niger EN-13分离鉴定了31个化合物,发现9个新化合物,包括2个鞘酯类化合物(AN-1~2)、3个萘并-γ-吡喃酮类化合物(AN-3~5)、3个苯乙基取代的α-吡喃酮类化合物(AN-17, AN-19~20)和1个甾体Diels-Alder加成产物(AN-21),另有1个新的天然环二肽(AN-27)被分离鉴定;从菌株A. versicolor EN-7分离鉴定了24个化合物,发现2个新化合物,为蒽醌AV-12与AV-17,另外,从前一菌株(A. niger EN-13)中鉴定的2个新鞘酯类化合物(AN-1~2)在A. versicolor EN-7中也被再次分离到。 对大部分单体化合物进行了抗菌活性、DPPH自由基清除活性和细胞毒活性测试。结果显示新化合物AN-1、AN-5和AN-20具有弱或中等强度的抑制白色念珠菌生长的活性,AN-4、AN-5、AN-21显示了弱或中等强度的抑制黑曲霉生长的活性,AV-12、AV-17显示了弱的抑制大肠杆菌生长的活性。在DPPH自由基清除活性筛选中,AN-5显示了中等强度的活性,其EC50为109.3 mM,与阳性对照BHT相近(EC50为81.8 mM)。其它部分已知化合物在抗菌和DPPH自由基清除活性的筛选中也显示了弱或中等强度的活性。在针对人肝癌细胞株SMMC-7721和人肺腺癌细胞株A549的体外细胞毒活性筛选中,所测样品均未显示显著活性。
Resumo:
To investigate harmful effects of the dinoflagellate Alexandrium species on microzooplankton, the rotifer Brachionus plicatilis was chosen as an assay species, and tested with 10 strains of Alexandrium including one known non-PSP-producer (Alexandrium tamarense, AT-6). HPLC analysis confirmed the PSP-content of the various strains: Alexandrium lusitanicum, Alexandrium minutum and Alexandrium tamarense (ATHK, AT5-1, AT5-3, ATC102, ATC103) used in the experiment were PSP-producers. No PSP toxins were detected in the strains Alexandrium sp1, Alexandrium sp2. Exposing rotifer populations to the densities of 2000 cells ml(-1) of each of these 10 Alexandrium strains revealed that the (non-PSP) A. tarnarense (AT-6) and two other PSP-producing algae: A. lusitanicum, A. minutum, did not appear to adversely impact rotifer populations. Rotifers exposed to these three strains were able to maintain their population numbers, and in some cases, increase them. Although some increases in rotifer population growth following exposures to these three algal species were noted, the rate was less than for the non-exposed control rotifer groups. In contrast, the remaining seven algal strains (A. tamarense ATHK, AT5-1, AT5-3, ATC102, ATC103; also Alexandrium sp1 and Alexandrium sp2) all have adverse effects on the rotifers. Dosing rotifers with respective algal cell densities of 2000 cells ml-1 each, for Alexandrium spl, Alexandrium sp2, and A. tamarense strains ATHK and ATC103 showed mean lethal time (LT50) on rotifer populations of 21, 28, 29, and 36h, respectively. The remaining three species (A. tamarense strains AT5-1, AT5-3, ATC102) caused respective mean rotifer LT50S of 56, 56, and 71 h, compared to 160 h for the unexposed "starved control" rotifers. Experiments to determine ingestion rates for the rotifers, based on changes in their Chlorophyll a content, showed that the rotifers could feed on A. lusitanicum, A. minutum and A. tamarense strain AT-6, but could graze to little or no extent upon algal cells of the other seven strains. The effects on rotifers exposed to different cell densities, fractions, and growth phases of A. tamarense algal culture were respectively compared. It was found that only the whole algal cells had lethal effects, with strongest impact being shown by the early exponential growth phase of A. tamarense. The results indicate that some toxic mechanism(s), other than PSP and present in whole algal cells, might be responsible for the adverse effects on the exposed rotifers. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The effects of Alexandrium tamarense (strain ATHK) on early development of the bay scallop Argopecten irradians concentricus were studied under laboratory conditions. The algal culture was verified by HPLC to produce paralytic shellfish poisoning (PSP) at a level of 37.48 fmol/cell. Survival of the scallop larvae was not affected when they were grown with A. tamarense at concentrations of 500-10,000 cells/ml for 48 h. However, the activity of D-shape larvae was inhibited after 48-h exposure to A. tamarense at the algal cell density of 10,000 cells/ml. Scallop growth was inhibited significantly by A. tantarense during a 14-day exposure starting at the eye-spot larval stage. The size of juvenile scallops in the group of 10,000 cells/ml was only about 32% of that of the controls, although no obvious effect of A. tamarense was found on the rate of larval metamorphosis. All juvenile scallops survived in algal concentrations of 600-2400 cells/ml, however, attachment rates were significantly lower than control values after a 5-h exposure to A. tamarense at concentrations >600 cells/ml, while they were not obviously reduced after only 1 h of exposure. At concentrations >600 cells/ml, the climbing ability of juveniles was clearly reduced by exposure to A. tamarense after only 1 h. The climbing rate and height were only 55% and 45%, respectively, of those of the controls, when exposed to A. tantarense at a concentration of 600 cells/ml. The results indicated that A. tamarense blooms may have detrimental impacts on shellfish at early life stages, therefore, special attention should be paid to the toxic algal blooms in shellfish breeding area. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
A shellfish toxin investigation along the Chinese coast has recently been conducted using both HPLC and mouse assay methods. The results showed that DSP was widely distributed in different shellfish species in China. 26 out of 89 samples had DTX1 (dinophysistoxin-1) or OA (okadaic acid) but the DSP content in most shellfish samples did not reach the regulatory limit for human consumption adopted in many countries (20 mu g/100 g soft tissue). PSP was also found in 5 out of 96 samples along the coast. One sample, Chlamys nobilis from Hong Kong contained high levels of PSP (320 mu g STX equivalent/100 g soft tissue), compared to the regulatory limit (80 mu g STX equivalent/100 g soft tissue). After the recent outbreak of red tide in Hong Kong waters, three further shellfish samples were collected within 40 days to investigate the impacts of this event, It was shown that high levels of PSP continued to exist in Hong Kong waters. This report provides the first report of DSP and PSP distribution along the Chinese coast. (C) 1999 Elsevier Science Ltd, All rights reserved.
Resumo:
Me optimal conditions were established for the extraction of paralytic shellfish poisoning toxins from gonad of Chlamys nobills using acetic acid and hydrochloric acid in the concentration range of 0.04-1.0 mol/L. A 10-g portion of gonad of Chlamys nobilis was extracted by boiling for 5 min with 1.0 mL acetic acid and hydrochloric acid in a 50-mL beaker. Meanwhile, a portion of gonad of Chlamys nobilis was extracted by sonication in the solution of 0.3 mol/L HAc + 0.2 mol/L HCl for a total period of 5-30 min. The raw extract was centrifuged at 3500 r/min for 5 min and the pH of supernatant was adjusted from 2.0 to 4.0 by 0.1 mol/L NaOH or 5 mol/L HCL After passing through a Millipore ultrafiltration membrane (10000 MW cut-off), ultrafiltrate was then analyzed by HPLC. The results showed that hydrochloric acid in the concentration range of 0.25-1.0 mol/L caused a significant decrease of N-sulfocarbarnoyl-11-hydroxysulfate toxin C1 (C1), C2 and gonyautoxin 5 (GTX5) and the concomitant increase of GTX2,3. However, the amount of the three unstable toxins did not show any change using the extraction with acetic acid. Under the same concentration of acetic acid (0.3 mol/L) and hydrochloric acid (0.2 mol/L), the amount of C1 in the ultrasonic extraction was obviously lower than the boiling one, while C2 showed slightly higher than the latter.
Resumo:
Objective To study the transfer of paralytic shellfish toxins (PST) using four simulated marine food chains: dinoflagellate Alexandrium tamarense -> Arterriia Artemia salina -> Mysid shrimp Neomysis awatschensis; A. tamarense-N. awatschensis: A. taniarense A. salina -> Perch Lateolabrax japonicus; and A. tamarense -> L. japonicus. Methods The ingestion of A. tamarense, a producer of PST, by L. japonicus, N. awatschensis, and A. salina was first confirmed by microscopic observation of A. tamarense cells in the intestine samples of the three different organisms, and by the analysis of Chl.a levels iii the samples. Toxin accumulation in L. japonicus and N. awatschensis directly from the feeding on A. tamarense or indirectly ibrough the vector of A. salina was then studied. The toxicity of samples was measured using the AOAC mouse bioassay method, and the toxin content and profile of A. tamarense were analyzed by the HPLC method. Results Both A. salina and N. awatschensis could ingest A. tamarense cells. However, the ingestion capability of A. salina exceeded that of N. awatschensis. After the exposure to the culture of A. tamarense (2 000 cells(.)mL(-1)) for 70 minutes, the content of ChLa in A. salina and N. awatschensis reached 0.87 and 0.024 mu g-mg(-1), respectively. Besides, A. tamarense cells existed in the intestines of L. japonicus, N. awatschensis and A. salina by microscopic observation. Therefore, the three organisms could ingest A. tamarense cells directly. A. salina could accumulate high content of PST, and the toxicity of A. salina in samples collected on days 1, 4, and 5 of the experiment was 2.18, 2.6, and 2.1 MU(.)g(-1), respectively. All extracts from the samples could lead to death of tested mice within 7 minutes, and the toxin content in arternia sample collected on the 1st day was estimated to be 1.65x10(-5) pg STX equa Vindividual. Toxin accumulation in L. japonicus and N. awatschensis directly from the feeding on A. tamarense or indirectly froin the vector of A. salina was also studied. The mice injected with extracts from L. japonicus and N. awatschensis samples that accumulated PST either directly or indirectly showed PST intoxication symptoms, indicating that low levels of PST existed in these samples. Conclusion Paralytic shellfish toxins can be transferred to L. japonicus, N. awatschensis, and A. salina from A. taniarense directly or indirectly via the food chains.
Resumo:
Supercritical fluid extraction (SFE) was used to extract homoisoflavonoids from Ophiopogon japonicus (Thunb.) Ker-Gawler. The optimization of parameters was carried out using an orthogonal test L-9 (3)(4) including pressure, temperature, dynamic extraction time and the amount of modifier. The process was then scaled up by 100 times with a preparative SFE system under the optimized conditions of 25 MPa, 55 degrees C, 4.0 h and 25% methanol as a modifier. Then crude extracts were separated and purified by high-speed counter-current chromatography (HSCCC) with a two-phase solvent system composed of n-hexane/ethyl acetate/methanol/ACN/water (1.8:1.0:1.0:1.2:1.0 v/v). There three homoisoflavonoidal compounds including methylophiopogonanone A 6-aldehydo-isoophiopogonone A, and 6-formyl-isoophiopogonanone A, were successfully isolated and purified in one step. The collected fractions were analyzed by HPLC. In each operation, 140 mg crude extracts was separated and yielded 15.3 mg of methylophiopogonanone A (96.9% purity), 4.1 mg of 6-aldehydo-isoophiopogonone A (98.3% purity) and 13.5 mg of 6-formyl-isoophiopogonanone A (97.3% purity) respectively. The chemical structure of the three homoisoflavonoids are identified by means of ESI-MS and NMR analysis.
Resumo:
Chemical investigation of the ethanol extract of the marine green alga Chaetomorpha basiretorsa Setchell led to the isolation of a new sterol stigmast-4,28-dien-3 alpha 6 beta-diol 1 in addition to the five known sterols of beta-lawsaritol 2, saringosterol 3, 24-hydroperoxy-24-vinyl - cholesterol 4, beta-stigmasterol 5, 29-hydroxystigmasta-5, 24(28) -dien-3 beta-ol 6. Compounds were isolated by normal phase silica gel and Sephadex LH - 20 gel colum chromatography, reverse phase HPLC and recrystalization. Their structures were elucidated by spectroscopic methods including MS, IR 1D/2D NMR and X-ray analysis. Cytotoxicity of compounds was screened by using the standard WIT method. All these compounds were isolated from the green alga Chaetomorpha basiretorsa Setchell for the first time and they were inactive (50% inhibitory concentration was greater than 10 mu g /cm(3)) against KB, Bel -7402, PC - 3M, Ketr 3 and MCF - 7 cell lines.
Resumo:
Two strains H-2-410 and H-2-419 were obtained from the chemically mutated survivors of wild Haematococcus pluvialis 2 by using ethyl methanesulphonate (EMS). Strains H2-410 and H2-419 showed a fast cell growth with 13% and 20% increase in biomass compared to wild type, respectively. Then H-2-419-4, a fast cell growth and high astaxanthin accumulation strain, was obtained by exposing the strain H2-419 to ultraviolet radiation (UV) further. The total biomass, the astaxanthin content per cell, astaxanthin production of H-2-4194 showed 68%, 28%, and 120% increase compared to wild H. pluvialis 2, respectively. HPLC (High Performance Liquid Chromatography) data showed also an obvious proportional variation of different carotenoid compositions in the extracts of H2-4194 and the wild type, although no peak of carotenoids appeared or disappeared. Therefore, the main compositions in strain H-2-419-4, like its wild one, were free of astaxanthin, monoester, and diester of astaxanthin. The asexual reproduction in survivors after exposed to UV was not synchronous, and different from the normal synchronous asexual reproduction as the mother cells were motile instead of non-motile. Interestingly, some survivors from UV irradiation produced many mini-spores (or gamete?), the spores moved away from the mother cell gradually 4 or 5 days later. This is quite similar to sexual reproduction described by Elliot in 1934. However, whether this was sexual reproduction remains questionable, as no mating process has been observed.
Resumo:
Eight compounds were isolated from red alga Gymnogongrus flabelliformis Harv. In normal phase silica gel, Sephadex LH-20 gel column chromatography, reverse phase HPLC, and recrystallization. Based on MS and 1D NMR spectroscopic data, their structures were determined as: stigmast-4-en-3-one (I), cholest-4-en-3-one (II), cholesterol (III), uracil (IV), uridine (V), adenosine (VI), succinic acid (VII), and 5-hydroxy-4-methyl-5-pentyl-2,5-dihydro-furan-2-on (VIII). All of them were obtained from this species for the first time. Cytotoxicity of these compounds was screened using standard MTT method, but all the compounds were inactive (IC50 > 10 mu g/ml).
Residues of enrofloxacin, furazolidone and their metabolites in Nile tilapia (Oreochromis niloticus)
Resumo:
The residues of enrofloxacin and its metabolite in Nile tilapia (Oreochromis niloticus) were studied after oral dose of 50 mg/kg for 7 days. To find the differences between Nile tilapia and Chinese shrimp (Penaeus chinensis), the residues of enrofloxacin in P chinensis were also studied under the same conditions. The results showed that enrofloxacin metabolized into ciprofloxacin in both Nile tilapia and P chinensis, the maximal concentration of enrofloxacin in muscle, liver and plasma of Nile tilapia were 3.61 mu g/g, 5.96 mu g/g, 1.25 mu g/ml respectively, and ciprofloxacin in muscle was 0.22 mu g/g. The maximal concentration of enrofloxacin and ciprofloxacin in P chinensis were 1.68 mu g/g and 0.07 mu g/g respectively. The predicted withdrawal time for Nile tilapia was 22 days, and P. chinensis was 12 days under our experiment conditions. The residues of fitrazolidone [3-(5-nitrofurfurylidenamino)-2-oxazolidinone] and its main metabolite 3-amina-2-oxazolidinone (AOZ) in Nile tilapia were first determined by HPLC/MS. Results showed that after oral dose of 30 mg/kg for 7 days, the maximum concentration of farazolidone in Nile tilapia was 413 mu g/kg after 6 h, whereas AOZ residue reached its maximum (31 mu g/kg) right after stopping treatment. In contrast to the high metabolic rate of furazolidone, AOZ was very difficult to eliminate in vivo, thus the withdrawal time of furazolidone in Nile tilapia was 22 days at least. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The hyphenated technique of high performance liquid chromatography coupled with inductively coupled plasma mass spectrometry (HPLC-ICP-MS) was applied to the simultaneous determination of five organotin compounds (trimethyltin, dibutyltin, tributyltin, diphenyltin and triphenyltin) in seawater samples. Agilent TC-C18 column was used for the separation, the mobile phase of HPLC was CH3CN : H2O: CH3COOH=65 : 23 : 12 (phi), 0.05% TEA, and pH value was adjusted to 3.0 by diluent ammonia. The flow rate was 0.6 mL . min(-1). Five mixed organotin compounds in a mix standard solution from 100 to 0.5 mu g . L-1 were applied for the method assessment. The experimental results indicate that the correlation coefficient of calibration curves (R-2) for each organotin compound was over 0.998 and the detection limits of the five organotin compounds were lower than 3 ng . L-1. Different mixed organic solvents including dichloromethane or toluene were used for extraction of organotin and the extraction condition of organotin from seawater was optimized. The 100 mL seawater acidized by hydrochloric acid was extracted by 10 mL carbon dichloride (CH2Cl2) with 2% tropolone for 10 min twice. Extracted organic solvents were mixed And blown to one drop by nitrogen with the rate of 1.7 mL . min(-1), then 1 mL acetonitrile was added to the drop for redissolving the organotin compounds. Finally, the mixed redissolution was filtered by 0.22 mu m organic filter membrane before analysis. it was found that the only organotin compound in seawater was triphenyltin (TPHT) and the content was 53.2 ng . L-1. The recoveries test from the standard addition for diphenyltin (DPHT), dibutyltin (DBT), tributyltin (TBT) and triphenyltin (TPHT) were over 80%. However, the recovery for trimethyltin (TMT) was relatively low and the value was 50%. The reason might be attributed to the decomposition or adsorption of those compounds during the extraction procedure. Further study on this subject is in progress.