878 resultados para Glyphosate Spraying
Resumo:
Routine monitoring of environmental pollution demands simplicity and speed without sacrificing sensitivity or accuracy. The development and application of sensitive, fast and easy to implement analytical methodologies for detecting emerging and traditional water and airborne contaminants in South Florida is presented. A novel method was developed for quantification of the herbicide glyphosate based on lyophilization followed by derivatization and simultaneous detection by fluorescence and mass spectrometry. Samples were analyzed from water canals that will hydrate estuarine wetlands of Biscayne National Park, detecting inputs of glyphosate from both aquatic usage and agricultural runoff from farms. A second study describes a set of fast, automated LC-MS/MS protocols for the analysis of dioctyl sulfosuccinate (DOSS) and 2-butoxyethanol, two components of Corexit®. Around 1.8 million gallons of those dispersant formulations were used in the response efforts for the Gulf of Mexico oil spill in 2010. The methods presented here allow the trace-level detection of these compounds in seawater, crude oil and commercial dispersants formulations. In addition, two methodologies were developed for the analysis of well-known pollutants, namely Polycyclic Aromatic Hydrocarbons (PAHs) and airborne particulate matter (APM). PAHs are ubiquitous environmental contaminants and some are potent carcinogens. Traditional GC-MS analysis is labor-intensive and consumes large amounts of toxic solvents. My study provides an alternative automated SPE-LC-APPI-MS/MS analysis with minimal sample preparation and a lower solvent consumption. The system can inject, extract, clean, separate and detect 28 PAHs and 15 families of alkylated PAHs in 28 minutes. The methodology was tested with environmental samples from Miami. Airborne Particulate Matter is a mixture of particles of chemical and biological origin. Assessment of its elemental composition is critical for the protection of sensitive ecosystems and public health. The APM collected from Port Everglades between 2005 and 2010 was analyzed by ICP-MS after acid digestion of filters. The most abundant elements were Fe and Al, followed by Cu, V and Zn. Enrichment factors show that hazardous elements (Cd, Pb, As, Co, Ni and Cr) are introduced by anthropogenic activities. Data suggest that the major sources of APM were an electricity plant, road dust, industrial emissions and marine vessels.
Resumo:
Carbon nanotubes (CNT) could serve as potential reinforcement for metal matrix composites for improved mechanical properties. However dispersion of carbon nanotubes (CNT) in the matrix has been a longstanding problem, since they tend to form clusters to minimize their surface area. The aim of this study was to use plasma and cold spraying techniques to synthesize CNT reinforced aluminum composite with improved dispersion and to quantify the degree of CNT dispersion as it influences the mechanical properties. Novel method of spray drying was used to disperse CNTs in Al-12 wt.% Si pre-alloyed powder, which was used as feedstock for plasma and cold spraying. A new method for quantification of CNT distribution was developed. Two parameters for CNT dispersion quantification, namely Dispersion parameter (DP) and Clustering Parameter (CP) have been proposed based on the image analysis and distance between the centers of CNTs. Nanomechanical properties were correlated with the dispersion of CNTs in the microstructure. Coating microstructure evolution has been discussed in terms of splat formation, deformation and damage of CNTs and CNT/matrix interface. Effect of Si and CNT content on the reaction at CNT/matrix interface was thermodynamically and kinetically studied. A pseudo phase diagram was computed which predicts the interfacial carbide for reaction between CNT and Al-Si alloy at processing temperature. Kinetic aspects showed that Al4C3 forms with Al-12 wt.% Si alloy while SiC forms with Al-23wt.% Si alloy. Mechanical properties at nano, micro and macro-scale were evaluated using nanoindentation and nanoscratch, microindentation and bulk tensile testing respectively. Nano and micro-scale mechanical properties (elastic modulus, hardness and yield strength) displayed improvement whereas macro-scale mechanical properties were poor. The inversion of the mechanical properties at different scale length was attributed to the porosity, CNT clustering, CNT-splat adhesion and Al4C3 formation at the CNT/matrix interface. The Dispersion parameter (DP) was more sensitive than Clustering parameter (CP) in measuring degree of CNT distribution in the matrix.
Resumo:
Aluminum oxide (A1203, or alumina) is a conventional ceramic known for applications such as wear resistant coatings, thermal liners, heaters, crucibles, dielectric systems, etc. However applications of A1203 are limited owing to its inherent brittleness. Due to its excellent mechanical properties and bending strength, carbon nanotubes (CNT) is an ideal reinforcement for A1203 matrix to improve its fracture toughness. The role of CNT dispersion in the fracture toughening of the plasma sprayed A1203-CNT nanocomposite coating is discussed in the current work. Pretreatment of powder feedstock is required for dispersing CNTs in the matrix. Four coatings namely spray dried A1203 (A-SD), A1203 blended with 4wt.% CNT (A4C-B), composite spray dried A1203-4wt.% CNT (A4C-SD) and composite spray dried A1203-8wt.% CNT (A8CSD), are synthesized by plasma spraying. Owing to extreme temperatures and velocities involved in the plasma spraying of ceramics, retention of CNTs in the resulting coatings necessitates optimizing plasma processing parameters using an inflight particle diagnostic sensor. A bimodal microstructure was obtained in the matrix that consists of fully melted and resolidified structure and solid state sintered structure. CNTs are retained both in the fully melted region and solid-state sintered regions of processed coatings. Fracture toughness of A-SD, A4C-B, A4C-SD and A8C-SD coatings was 3.22, 3.86, 4.60 and 5.04 MPa m1/2 respectively. This affirms the improvement of fracture toughness from 20 % (in A4C-B coating) to 43% (in A4C-SD coating) when compared to the A-SD coating because of the CNT dispersion. Fracture toughness improvement from 43 % (in A4C-SD) to 57% (in A8C-SD) coating is evinced because of the CNT content. Reinforcement by CNTs is described by its bridging, anchoring, hook formation, impact alignment, fusion with splat, and mesh formation. The A1203/CNT interface is critical in assisting the stress transfer and utilizing excellent mechanical properties of CNTs. Mathematical and computational modeling using ab-initio principle is applied to understand the wetting behavior at the A1203/CNTinterface. Contrasting storage modulus was obtained by nanoindentation (~ 210, 250, 250-350 and 325-420 GPa in A-SD, A4C-B, A4C-SD, and A8C-SD coatings respectively) depicting the toughening associated with CNT content and dispersion.
Resumo:
Objective. This study aims to provide a better understanding of the amounts spent on different malaria prevention products and the determinants of these expenditures. Methods. 1,601 households were interviewed about their expenditure on malaria mosquito nets in the past five years, net re-treatments in the past six months and other expenditures prevention in the past two weeks. Simple random sampling was used to select villages and streets while convenience sampling was used to select households. Expenditure was compared across bed nets, aerosols, coils, indoor spraying, using smoke, drinking herbs and cleaning outside environment. Findings. 68% of households owned at least one bed net and 27% had treated their nets in the past six months. 29% were unable to afford a net. Every fortnight, households spent an average of US $0.18 on nets and their treatment, constituting about 47% of total prevention expenditure. Sprays, repellents and coils made up 50% of total fortnightly expenditure (US$0.21). Factors positively related to expenditure were household wealth, years of education of household head, household head being married and rainy season. Poor quality roads and living in a rural area had a negative impact on expenditure. Conclusion. Expenditure on bed nets and on alternative malaria prevention products was comparable. Poor households living in rural areas spend significantly less on all forms of malaria prevention compared to their richer counterparts. Breaking the cycle between malaria and poverty is one of the biggest challenges facing malaria control programmes in Africa.
Resumo:
Insecticide treated bed nets and indoor residual spraying are the most widely used vector control methods in Africa. The World Health Organization now recommends four classes of insecticides for use against adult mosquitoes in public health programs. Of these four classes of insecticides, pyrethroids have become the insecticides of choice in treating mosquito bed nets and in the use of indoor spraying to prevent malaria transmission. Pyrethroids are not only used in malaria control but also in agriculture to protect against pest insects. This concurrent use of pyrethroids in vector control and protection of crops from pests in agriculture may exert selection pressure on mosquito larval population and induce resistance to this class of insecticides. The main objective of our study was to explore the role of agricultural chemicals and the response of mosquitoes to pyrethroids in an area of high malaria transmission.
We used a cross-sectional study design. This was a two-step study involving both mosquitoes and human subjects. In this study, we collected larvae growing in breeding sites affected by different agricultural practices. We used purposive sampling to identify active mosquito breeding sites and then interviewed households adjacent to those breeding sites to learn about their agricultural practices that might influence the response of mosquitoes to pyrethroids. We also performed secondary analysis of larval data from a previous case-control study by Obala et al.
Resumo:
The soybean is the grain in which greater food dependency has Mexico, reason why as of 2008, the government has promoted his culture, granting excellent subsidies, as much to producers as to buyers of the grain, thus contributing to a recent process of expansion in certain states, as it happens in Campeche. The objetive of this article is the analysis of the characteristics and effects of those supports, as well as of the rest of factors that until today they have taken to the producers of the mentioned state to initiate or to expand the cultivation of the soybean. The findings of the investigation reveal that although the producers have improved their levels of income, the process is vulnerable, as it depends on variables like the governmental supports, the international prices of the soybean and exchange rate. Although the study of the negative effects of genetically modified soybeans (GM) in other areas (environment, biodiversity, deforestation, human and animal health) is not the purpose of this investigation, some information will be provided, as on the conflict between soybean producers and beekeepers in the state of Campeche.
Resumo:
Malaria remains a serious public health challenge in the tropical world, with 584,000 deaths globally in 2013, of which 90% occurred in Africa, and mostly in pregnant women and children under the age of five. Anopheles gambiae (An. gambiae) is the principal malaria vector in Africa, where vector control measures involve the use of insecticides in the forms of long-lasting insecticide-treated nets (LLINs) and indoor residual spraying (IRS). The development of insecticides resistance mitigates these approaches. Glutathione (GSH) is widely distributed among all living organisms, and is associated with detoxification pathways, especially the Glutathione S-transferases (GSTs). Its direct involvement and relevance in insecticide resistance in An. gambiae has not been determined. Thus, this work examines the contribution of GSH, its biosynthetic genes (GCLM, GCLC) and their possible transcriptional regulator Nrf2 in insecticide resistance in An. gambiae sampled from agricultural setting (areas of intensive agriculture) and residential setting (domestic area). Bioinformatics analysis, W.H.O. adult susceptibility bioassays and molecular techniques were employed to investigate. Total RNA was first isolated from the adults An. gambiae mosquitoes raised from agricultural and residential field-caught larvae which had been either challenged or unchallenged with insecticides. Semi-quantitative RT-PCR using gel image densitometry was used to determine the expression levels of GCLM, GCLC genes and Nrf2. Bioinformatics’ results established the presence of putative AGAP010259 (AhR) and AGAP005300 (Nf2e1) transcription factor binding sites in An. gambiae GCLC and GCLM promoters in silico. An. gambiae s.l. studied here were highly resistant to DDT and permethrin but less resistant to bendiocarb. Both knockdown resistance (kdr) mutation variants L1014S and L1014F that confers resistance to pyrethroid insecticides were identified in both An. coluzzii and An. arabiensis sampled from northern Nigeria. The L1014F was much associated with An. coluzzii. A significant positive correlation (P=0.04) between the frequency of the L1014F point mutation and resistance to DDT and permethrin was observed. However, a weak or non-significant correlation (P=0.772) between the frequency of the L1014S point mutation and resistance was also found. L1014S and L1014F mutations co-occurred in both agricultural and residential settings with high frequencies. However, the frequencies of the two mutations were greater in the agricultural settings than in the residential settings. The levels of total, reduced and oxidized GSH were significantly higher in mosquitoes from agricultural sites than those from residential sites. Increased oxidized GSH levels appears to correlate with higher DDT resistance. The expression levels of GCLM, GCLC and Nrf2 were also significantly up-regulated in adults An. gambiae raised from agricultural and residential field-caught larvae when challenged with insecticide. However, there was higher constitutive expression of GCLM, GCLC and Nrf2 in mosquitoes from agricultural setting. The increased expression levels of these genes and also GSH levels in this population suggest their roles in the response and adaptation of An. gambiae to insecticide challenges. There exists the feasibility of using GSH status in An. gambiae to monitor adaptation and resistance to insecticides.
Resumo:
The aim of this dissertation was to investigate flexible polymer-nanoparticle composites with unique magnetic and electrical properties. Toward this goal, two distinct projects were carried out. The first project explored the magneto-dielectric properties and morphology of flexible polymer-nanoparticle composites that possess high permeability (µ), high permittivity (ε) and minimal dielectric, and magnetic loss (tan δε, tan δµ). The main materials challenges were the synthesis of magnetic nanoparticle fillers displaying high saturation magnetization (Ms), limited coercivity, and their homogeneous dispersion in a polymeric matrix. Nanostructured magnetic fillers including polycrystalline iron core-shell nanoparticles, and constructively assembled superparamagnetic iron oxide nanoparticles were synthesized, and dispersed uniformly in an elastomer matrix to minimize conductive losses. The resulting composites have demonstrated promising permittivity (22.3), permeability (3), and sustained low dielectric (0.1), magnetic (0.4) loss for frequencies below 2 GHz. This study demonstrated nanocomposites with tunable magnetic resonance frequency, which can be used to develop compact and flexible radio frequency devices with high efficiency. The second project focused on fundamental research regarding methods for the design of highly conductive polymer-nanoparticle composites that can maintain high electrical conductivity under tensile strain exceeding 100%. We investigated a simple solution spraying method to fabricate stretchable conductors based on elastomeric block copolymer fibers and silver nanoparticles. Silver nanoparticles were assembled both in and around block copolymer fibers forming interconnected dual nanoparticle networks, resulting in both in-fiber conductive pathways and additional conductive pathways on the outer surface of the fibers. Stretchable composites with conductivity values reaching 9000 S/cm maintained 56% of their initial conductivity after 500 cycles at 100% strain. The developed manufacturing method in this research could pave the way towards direct deposition of flexible electronic devices on any shaped substrate. The electrical and electromechanical properties of these dual silver nanoparticle network composites make them promising materials for the future construction of stretchable circuitry for displays, solar cells, antennas, and strain and tactility sensors.
Resumo:
The strong selection pressure exerted by intensive use of glyphosate in cultivated areas has selected populations of the Rubiaceae weed species Borreria latifolia (Aubl.) K.Shum. (broadleaf buttonweed), Galianthe chodatiana (Standl.) E.L. Cabral (galiante) and Richardia brasiliensis Gomes (Brazilian pusley) with differential sensitivity to this herbicide in the South region of Brazil. The control of these weeds with herbicides is troublesome and signals the need to incorporate management practices of ruderal flora and crops, more sustainable and that results in more efficient control for long-term. Therefore, it is very important to expand the information about their biology and management. This study aimed: (a) select efficient methods to overcome dormancy of B. latifolia and G. chodatiana and determine how they influence the kinetics of seeds germination; (b) analyze the effects of temperature, irradiance, pH, aluminum and salinity on seed germination and initial growth of the B. latifolia, G. chodatiana e R. brasiliensis seedlings; (c) evaluate tolerance to glyphosate levels in biotypes of B. latifolia, G. chodatiana e R. brasiliensis through dose-response curves and compare two methods to evaluate herbicidal control; (d) and evaluated the effectiveness of alternative herbicides in pre-emergence and in early and late post-emergence of the three species. The treatment with KNO3 2%/3h + gibberellic acid 400 ppm resulted in higher percentage of G. chodatiana seed germination. This treatment and also the dry heat (60°C/30 min) + KNO3 2%/3h were more effective in overcoming dormancy of B. latifolia. G. chodatiana and R. brasiliensis tolerate lower temperatures during the germination process, while B. latifolia tolerate higher temperatures. B. latifolia and R. brasiliensis are positive photoblastic while G. chodatiana is indifferent to the photoperiod. B. latifolia shows higher germination and early development in pH 3, while G. chodatiana and R. brasiliensis prefer pH range between 5 and 7. B. latifolia and G. chodatiana were more tolerant to the aluminum during the germination process than R. brasiliensis. Low salt levels were sufficient to reduce the seed germination of the three species. Some biotypes of B. latifolia and R. brasiliensis showed medium-high glyphosate tolerance, not being controlled by higher doses than recommended. The G. chodatiana specie was not controlled with the highest dose used, showing a high glyphosate tolerance. The sulfentrazone, s-metolachlor and saflufenacil herbicides sprayed in pre-emergence showed high efficacy both on B. latifolia and R. brasiliensis, while chlorimuron-ethyl and diclosulan were effective only on R. brasiliensis. In early post-emergence the fomesafen, lactofem and flumioxazin herbicides efficiently controlled plants of all species, while bentazon showed high efficacy only on B. latifolia. Noteworthy the susceptibility of the G. chodatiana specie for applications in early post-emergence, because the control effectiveness and the number of effective herbicides are reduced with increasing the plant age. Many treatments with tank mix or sequencial applications with glyphosate, were effective in controlling B. latifolia and R. brasiliensis plants in advanced stage of development.
Resumo:
The use of cover crops is a fundamental strategy to the weed management in Southern Brazil. In highly infested areas, the herbicides use is increasing, which increases the costs of the crops production as well as the environmental contamination. Oat and velvet bean plants havecontrasting characteristics regarding to residues decomposition speed and the capacity to immobilize Nitrogen in the soil, providing distinct results of weeds suppression throughout the time, and therefore, requiring distinct management strategies before, during, and after the corn crop establishment. The general objective of the experiment was to evaluate the environmental dynamics of the herbicide atrazine, the corn grain yield, and the efficiency of the weed control, considering areas with distinct history regarding the use of mulching, levels of straw and rates of atrazine. For this, the experiment was carried out in two parts: in the first part, two trials with the corn crop were established, one using oat and the other using velvet bean as cover crops. The experimental design used for both field trials was randomized complete blocks arrangement with four replications. The factor A was constituted by four levels of straw (0; 0.75x; 1.5x; 3x) and the factor B was constituted by four rates of the herbicide atrazine (0; 2100; 4200; 8400 g a i. ha-1). Soil samples were collected for greenhouse trialsto determine the persistence. Atrazine leaching evaluation was performed by chromatography using samples collected over the soil profile.In the field, the weed density, the fresh and dry weight and the yield of the corn were evaluated. In the greenhouse trials, the main variables evaluated were plant height and injury caused by the herbicide toxicity. In the second part, soils with distinct covering history were sampled, and the mineralization and sorption studies, both with 14C-atrazine, were conducted in the laboratory. The experimental design was randomized complete blocks arrangement with four replications. The results from the field experiment show that the high levels of straw above ground, isolated, were not efficient to control completely the weeds, and that high levels of velvet bean`s straw decreased the corn potential yield. The greenhouse trials showed that high levels of oat straw prevent the scape of atrazine to soil, this effect of oat straw upon the herbicide availability on soil was detected up to 12 days after spraying. The half-life of atrazine sprayed over oat straw varied from 7 to 14 days after spraying, while the half-life of atrazine sprayed over velvet bean varied from 5 to 14 days after spraying. Increasing oat straw levels presents the capacity to reduce the lixiviation of atrazine in the soil profile, however, this effect was not verified when using velvet bean straw, because the herbicide was not detected in the soil profile, at 21 days after spraying. The chromatographic analysis indicate thatthe atrazine concentrates closer to the soil surface regardless of amount of straw, not being detected deeper than 8 cm in the soil. The accumulated mineralization of 14C-arazine sprayed over V. sativa is superior if compared to soils with S. cereale or non-covered soils. The sorption coefficient of atrazine is superior when sprayed over straw than over the soil.
Resumo:
The effect of a pre-shipment hypochlorite treatment on botrytis incidence was evaluated in a large number of rose cultivars and under different long-term storage conditions. Application parameters, stability and sources of hypochlorite were investigated. Irrespective of the type of packaging and shipment conditions, roses that received a pre-shipment treatment with 100 to 150 mg/L hypochlorite showed a significantly decreased botrytis incidence compared to non-hypochlorite treated roses. The hypochlorite treatment generally was more effective than a comparable treatment with commercial fungicides. Dipping the flower heads for approximately one second in a hypochlorite solution was more effective than spraying the heads. In few cases minor hypochlorite-induced damage on the petal tips was observed at higher concentrations (>200 mg/L). Apart from the effect on botrytis incidence, the treatment resulted in reduced water loss that may have an additional beneficial effect on the eventual flower quality. It is concluded that, apart from other obvious measures to reduce botrytis incidence (prevention of high humidity at the flower heads) a pre-shipment floral dip in 100 to 150 mg/L hypochlorite from commercial household bleach is an easy and cost effective way to reduce botrytis incidence following long term storage/transportation of roses. © 2015, International Society for Horticultural Science. All rights reserved.
Resumo:
Nas últimas duas décadas, o descarte e o acúmulo de embalagens não biodegradáveis têm agravado os problemas ambientais. Uma das soluções encontradas, particularmente na área de embalagens de alimentos, é o desenvolvimento de filmes a partir de polímeros que possam substituir os materiais sintéticos. Fontes alternativas de proteína, como os resíduos de pescados, tornam-se importante, pois estes representam de 60 a 70% da matéria-prima e são descartados pelas indústrias de filetagem contribuindo com os danos ao meio ambiente. As propriedades funcionais dos filmes biodegradáveis são resultantes das características das macromoléculas utilizadas, das interações entre os constituintes envolvidos na formulação (macromolécula, solvente, plastificante e outros aditivos), dos parâmetros de fabricação (temperatura, tipo de solvente, pH, entre outras), do processo de dispersão da solução filmogênica (pulverização, espalhamento, etc.) e das condições de secagem. Um problema limitante no uso de filmes biodegradáveis a base de proteínas de pescado é a sua susceptibilidade à umidade, devido à hidrofilicidade dos aminoácidos das moléculas de proteína. O objetivo geral do trabalho foi desenvolver e caracterizar filmes a base de isolado proteico de resídeos de corvina (IPC) e óleo de palma (OP). O desenvolvimento dos filmes foi estudado em duas etapas. Neste estudo utilizou-se resíduos de corvina (Micropogonias furnieri) para a obtenção do isolado protéico, glicerol como plastificante e óleo de palma para conferir hidrofobicidade ao filme. Na primeira etapa, o objetivo foi investigar o efeito das concentrações de IPC, de glicerol e do pH sobre as propriedades dos filmes de proteína de resíduos de corvina (Micropogonias furnieri). Os filmes foram avaliados quanto aos parâmetros de cor, opacidade, propriedades mecânicas, espessura, solubilidade em água, permeabilidade de vapor de água (PVA) e propriedades morfológicas. Como resultado foi observado que a opacidade e a luminosidade dos filmes não foram afetados pelas variáveis do processo. Os filmes de IPC ficaram amarelados e opacos. Apresentaramse mais claros quando elaborados com baixas concentrações de IPC e altas concentrações de glicerol nas soluções filmogênicas. A menor solubilidade em água ocorreu nos filmes com pH baixo e menores concentrações de glicerol. Com relação as propriedades mecânicas, os filmes apresentaram alta elongação e sua resistência à tração aumentou quando utilizadas maiores concentrações de IPC, menores concentrações de glicerol e pHs mais baixos.Os filmes apresentaram superficies ásperas e irregulares. Na segunda etapa foram elaborados filmes biodegradáveis de IPC contendo diferentes concentrações de óleo de palma (OP) (10 e 20 g de OP /100g de IPC) e suas propriedades de barreira, mecânicas, físico-químicas, térmicas e morfológicas foram estudadas. A adição de OP aumentou as espessuras dos filmes com 2 e 4% de IPC, no entanto a solubilidade não foi afetada pela adição do OP. Os filmes com 3 e 4% de IPC ficaram menos permeáveis a água quando incorporado 20% de OP nos mesmos. A opacidade dos filmes aumentou com a adição do OP. A incorporação do OP nos filmes resultou em uma diminuição da resistência à tração e no aumento da elongação dos filmes. Nos filmes com 2% de IPC o aumento na elongação foi significativo apenas quando adicionado 20% de OP. O aparecimento de apenas uma temperatura de fusão nos filmes sugeriu uma homogeneidade dos mesmos. A decomposição térmica dos filmes iniciou em torno de 120 -173ºC. Os filmes apresentaram uma superfície descontínua.
Resumo:
Integration of multiple herbicide-resistant genes (trait stacking) into crop plants would allow over the top application of herbicides that are otherwise fatal to crops. The US has just approved Bollgard II® XtendFlex™ cotton which has dicamba, glyphosate and glufosinate resistance traits stacked. The pace of glyphosate resistance evolution is expected to be slowed by this technology. In addition, over the top application of two more herbicides may help to manage hard to kill weeds in cotton such as flax leaf fleabane and milk thistle. However, there are some issues that need to be considered prior to the adoption of this technology. Wherever herbicide tolerant technology is adopted, volunteer crops can emerge as a weed problem, as can herbicide resistant weeds. For cotton, seed movement is the most likely way for resistant traits to move around. Management of multiple stack volunteers may add additional complexity to volunteer management in cotton fields and along roadsides. This paper attempts to evaluate the pros and cons of trait stacking technology by analysing the available literature in other crop growing regions across the world. The efficacy of dicamba and glufosinate on common weeds of the Australian cotton system, herbicide resistance evolution, synergy and antagonisms due to herbicide mixtures, drift hazards and the evolution of herbicide resistance to glyphosate, glufosinate and dicamba were analysed based on the available literature.
Resumo:
Weed management has become increasingly challenging for cotton growers in Australia in the last decade. Glyphosate, the cornerstone of weed management in the industry, is waning in effectiveness as a result of the evolution of resistance in several species. One of these, awnless barnyard grass, is very common in Australian cotton fields, and is a prime example of the new difficulties facing growers in choosing effective and affordable management strategies. RIM (Ryegrass Integrated Management) is a computer-based decision support tool developed for the south-western Australian grains industry. It is commonly used there as a tool for grower engagement in weed management thinking and strategy development. We used RIM as the basis for a new tool that can fulfil the same types of functions for subtropical Australian cotton-grains farming systems. The new tool, BYGUM, provides growers with a robust means to evaluate five-year rotations including testing the economic value of fallows and fallow weed management, winter and summer cropping, cover crops, tillage, different herbicide options, herbicide resistance management, and more. The new model includes several northernregion- specific enhancements: winter and summer fallows, subtropical crop choices, barnyard grass seed bank, competition, and ecology parameters, and more freedom in weed control applications. We anticipate that BYGUM will become a key tool for teaching and driving the changes that will be needed to maintain sound weed management in cotton in the near future.
Resumo:
Considering their commercial importance, as these are the species of freshwater fish more commercialized in Brazil, their occurence in different kinds of aquatic environments (lakes, rivers and dams) and for being tolerant to a wide range of variation of various physical parameters and chemical water, the fish species Oreochromis niloticus, Cyprinus carpio and Colossoma macropomum were chosen for this study, furthermore, to test the toxicity we used the herbicide Roundup. The fingerlings of tilapia (Oreochromis niloticus), commun carp (Cyprinus carpio) and tambaqui (Colossoma macropomum) were submitted to the herbicide roundup in the following concentrations: 0.0 (control); 18,06; 19,10; 20,14; 21,18 and 22,22 mg.L-1, 0.0 (control); 13,89; 14,86; 15,83; 16,81 and 17,78 mg.L-1, and 0.0 (control); 18,06; 19,10; 20,14; 21,18 and 22,22 mg.L-1, respectively, three for 96 hours. The LC50 - 96h for O. niloticus, C. carpio and C. macropomum was 21,63, 15,33 and 20,06 mg.L-1 of the herbicide roundup, respectively. The results show that this herbicide is classified as slightly toxic to the three species. The values of dissolved oxygen, pH and temperature recorded in the aquarium control and aquarium experimental of the three fish species have remained without significant variations during the tests, which reduces the possibility of death caused by sudden variations of these parameters during the 96 hours the experiment. The values of LC50 between different species of fish were observed, noting that the species O.niloticus, C. carpio and C. macropomum showed no expressive differences. The values of environmental risk of Roundup were calculated to obtain more stringent parameters in assessing the dangerousness of those on nontargets. The risk of environmental contamination by Roundup for the Nile tilapia, common carp, and tambaqui are low for the lowest application rate (1 L.ha-1) and depths (1.5 and 2.0 m). The dilution of 100%, the highest recommended dose (5 L.ha-1) and depths (1.5 and 2.0 m) the risk is moderate for the three species. The values of the Risk Ratio (QR) were greater than 0,1, indicating that the values of the CAE and LC50 are above acceptable levels and there is a need, this study, a refinement in ecotoxicological tests