945 resultados para Glass-infiltrated alumina-based ceramic


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: This study evaluated the degree of conversion (DC) and working time (WT) of two commercial, dual-cured resin cements polymerized at varying temperatures and under different curing-light accessible conditions, using Fourier transformed infrared analysis (FTIR). Materials and Methods: Calibra (Cal; Dentsply Caulk) and Variolink II (Ivoclar Vivadent) were tested at 25 degrees C or preheated to 37 degrees C or 50 degrees C and applied to a similar-temperature surface of a horizontal attenuated-total-reflectance unit (ATR) attached to an infrared spectrometer. The products were polymerized using one of four conditions: direct light exposure only (600 mW/cm(2)) through a glass slide or through a 1.5- or 3.0-mm-thick ceramic disc (A2 shade, IPS e.max, Ivoclar Vivadent) or allowed to self-cure in the absence of light curing. FTIR spectra were recorded for 20 min (1 spectrum/s, 16 scans/spectrum, resolution 4 cm(-1)) immediately after application to the ATR. DC was calculated using standard techniques of observing changes in aliphatic-to-aromatic peak ratios precuring and 20-min postcuring as well as during each 1-second interval. Time-based monomer conversion analysis was used to determine WT at each temperature. DC and WT data (n=6) were analyzed by two-way analysis of variance and Tukey post hoc test (p=0.05). Results: Higher temperatures increased DC regardless of curing mode and product. For Calibra, only the 3-mm-thick ceramic group showed lower DC than the other groups at 25 degrees C (p=0.01830), while no significant difference was observed among groups at 37 degrees C and 50 degrees C. For Variolink, the 3-mm-thick ceramic group showed lower DC than the 1-mm-thick group only at 25 degrees C, while the self-cure group showed lower DC than the others at all temperatures (p=0.00001). WT decreased with increasing temperature: at 37 degrees C near 70% reduction and at 50 degrees C near 90% for both products, with WT reduction reaching clinically inappropriate times in some cases (p=0.00001). Conclusion: Elevated temperature during polymerization of dual-cured cements increased DC. WT was reduced with elevated temperature, but the extent of reduction might not be clinically acceptable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Urease (Urs) was immobilized in electrochemically prepared polypyrrole (PPy) and the resulting films were characterized by cyclic voltammetry, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and ultraviolet visible spectroscopy (UV-VIS). The enzymatic activity of Urs entrapped in the PPy matrix was confirmed by the catalytic conversion of urea into carbon dioxide and ammonia, when urea was detected amperometrically at different concentrations in standard samples and commercial fertilizers. The PPy/Urs biosensors exhibited selectivity, a relatively high efficiency at urea concentrations below 3.0 mmol L-1, and a sensitivity to urea of 2.41 mu A cm(-2) mmol(-1) L (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dispersion of photoluminescent rare earth metal complexes in polymer matrices is of great interest due to the possibility of avoiding the saturation of the photoluminescent signal. The possibility of using a natural ionic conducting polymer matrix was investigated in this study. Samples of agar-based electrolytes containing europium picrate were prepared and characterized by physical and chemical analyses. The FTIR spectra indicated strong interaction of agar O-H and 3.6-anhydro-galactose C-O groups with glycerol and europium picrate. The DSC analyses revealed no glass transition temperature of the samples in the -60 to 250 degrees C range. From the thermogravimetry (TG), a thermal stability of the samples of up to 180 degrees C was stated. The membranes were subjected to ionic conductivity measurement, which provided the values of 2.6 x 10(-6) S/cm for the samples with acetic acid and 1.6 x 10(-5) S/cm for the samples without acetic acid. Moreover, the temperature-dependent ionic conductivity measurements revealed both Arrhenius and VTF models of the conductivity depending on the sample. Surface visualization through scanning electron microscopy (SEM) demonstrated good uniformity. The samples were also applied in small electrochromic devices and showed good electrochemical stability. The present work confirmed that these materials may perform as satisfactory multifunctional component layers in the field of electrochemical devices. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: To evaluate the effect of additives on the water sorption characteristics of Bis-GMA based copolymers and composites containing TEGDMA, CH(3)Bis-GMA or CF(3)Bis-GMA. Material and methods: Fifteen experimental copolymers and corresponding composites were prepared combining Bis-GMA and TEGDMA, CH(3)Bis-GMA or CF(3)Bis-GMA, with aldehyde or diketone (24 and 32 mol%) totaling 30 groups. For composites, barium aluminosilicate glass and pyrogenic silica was added to comonomer mixtures. Photopolymerization was effected by 0.2 wt% each of camphorquinone and N,N-dimethyl-p-toluidine. Specimen densities in dry and water saturated conditions were obtained by Archimedes' method. Water sorption and desorption were evaluated in a desorption-sorption-desorption cycle. Water uptake (%WU), water desorption (%WD), equilibrium solubility (ES; mu g/mm(3)), swelling (f) and volume increase (%V) were calculated using appropriate equations. Results: All resins with additives had increased %WU and ES. TEGDMA-containing systems presented higher %WU, %WD, ES, f and %V values, followed by resins based on CH(3)Bis-GMA and CF(3)Bis-GMA. Conclusions: Aldehyde and diketone led to increases in the water sorption characteristics of experimental resins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper uses Nuclear Magnetic Resonance (NMR) and Differential Scanning Calorimetry (DSC) techniques to study the molecular relaxations and phase transitions in poly(9,9-di-n-octylfluorene-alt-benzothiadiazole) (F8BT), which has been extensively studied as the active thin film in organic devices. Besides the identification of the glass transition, beta relaxation and crystal-to-crystal phase transition, we correlate such phenomena with dielectric and transport mechanisms in diodes with F8BT as the active layer. The beta relaxation has been assigned to a transition at about 210 K measured by H-1 and C-13 solid state NMR, and can be attributed to local motions in the side chains. The glass transition has been detected by DSC and H-1 NMR. Dielectric spectroscopy (DS) carried out at low frequencies on diodes made from F8BT show two peaks which are coincident with the above transitions. This allowed us to correlate the electrical changes in the film with the onset of specific molecular motions. In addition, DS indicates a third peak related with a crystal-to-crystal phase transition. Finally, these transitions were correlated with changes in the carrier mobility recorded in thin films and published recently.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have conducted magnetoresistance measurements rho(T,H) in applied magnetic fields up to 18 T in Bi1.65Pb0.35Sr2Ca2Cu3O10+delta ceramic samples which were subjected to different uniaxial compacting pressures. The anisotropic upper critical fields H (c2)(T) were extracted from the rho(T,H) data, yielding and the out-of-plane superconducting coherence length xi (c) (0)similar to 3 . We have also estimated and xi (ab) (0) similar to 90 . In addition to this, a flux-line-lattice (FLL) melting temperature T (m) has been identified as a second peak in the derivative of the magnetoresistance d rho/dT data close to the superconducting transition temperature. An H (m) vs. T phase diagram was constructed and the FLL boundary lines were found to obey a temperature dependence H (m) ae(T (c) /T-1) (alpha) , where alpha similar to 2 for the sample subjected to the higher compacting pressure. A reasonable value of the Lindemann parameter c (L) similar to 0.29 has been found for all samples studied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nano-biocomposites based on a biodegradable bacterial copolyester, poly(hydroxybutyrate-co-hydroxyvalerate), have been elaborated with an organo-modified montmorillonite (OMMT) clay as nanofiller, and acetyl tributyl citrate as plasticizer. The corresponding (nano)structures, thermal and mechanical properties, permeability, and biodegradability have been determined. Polyhydroxyalkanoates are very thermal sensitive then to follow the degradation the corresponding matrices have been analyzed by size exclusion chromatography. The results indicate that the addition of the plasticizer decreases the thermo-mechanical degradation, during the extrusion. These nano-biocomposites show an intercalated/exfoliated structure with good mechanical and barrier properties, and an appropriated biodegradation kinetic. Intending to understand the changes in the thermal properties, the nano-biocomposites were characterized by thermal gravimetric analysis and differential scanning calorimetry. The presence of the OMMT clay did not influence significantly the transition temperatures. However, the filler not only acted as a nucleating agent which enhanced the crystallization, but also as a thermal barrier, improving the thermal stability of the biopolymer. The results indicated that the addition of the plasticizer reduces the glass transition temperature and the crystalline melting temperature. The plasticizer acts as a processing aid and increases the processing temperature range (lower melting temperature).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Samples of 40SiO(2)center dot 30Na(2)O center dot 1Al(2)O(3)center dot(29 - x)B2O3 center dot xFe(2)O(3) (mol%), with 0.0 <= x <= 17.5, were prepared by the fusion method and investigated by electron paramagnetic resonance (EPR), optical absorption (OA) and Mossbauer spectroscopy (MS). The EPR spectra of the as-synthesized samples exhibit two well-defined EPR signals around g = 4.27 and g = 2.01 and a visible EPR shoulder around g = 6.4, assigned to isolated Fe3+ ion complexes (g = 4.27 and g = 6.4) and Fe3+-based clusters (g = 2.01). Analyses of both EPR line intensity and line width support the model picture of Fe3+-based clusters built in from two sources of isolated ions, namely Fe2+ and Fe3+; the ferrous ion being used to build in iron-based clusters at lower x-content (below about x = 2.5%) whereas the ferric ion is used to build in iron-based clusters at higher x-content (above about x = 2.5%). The presence of Fe2+ ions incorporated within the glass template is supported by OA data with a strong band around 1100 nm due to the spin-allowed E-5(g)-T-5(2g) transition in an octahedral coordination with oxygen. Additionally, Mossbauer data (isomer shift and quadrupole splitting) confirm incorporation of both Fe2+ and Fe3+ ions within the template, more likely in tetrahedral-like environments. We hypothesize that ferrous ions are incorporated within the glass template as FeO4 complex resulting from replacing silicon in non-bridging oxygen (SiO3O-) sites whereas ferric ions are incorporated as FeO4 complex resulting from replacing silicon in bridging-like oxygen silicate groups (SiO4). (C) 2012 Elsevier Masson SAS. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plasticized natural macromolecules-based polymer electrolyte samples were prepared and characterized. The plasticization of chitosonium acetate with glycerol increased the ionic conductivity value from 3.0 x 10(-7) S/cm to 1.1 x 10(-5) S/cm. The conductivity temperature relationship of the samples exhibits either VTF or Arrhenius type depending on the glycerol concentration in the sample. The dielectric studies evidencing the relaxation process in the plasticized sample at low frequency region are due to the electric polarization effect. Moreover, the samples were transparent in the Vis region, showed thermal stability up to 160 degrees C and good surface uniformity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this this study, glycerol content and its incorporation method on tensile and barrier properties of biodegradable films (BF) based on cassava starch were analyzed. ANOVA showed that the glycerol incorporation method did not influence the results (P > 0.05), however the glycerol content influenced significantly the tensile and barrier properties of the films (P < 0.05). Films prepared with lower glycerol content presented better tensile and barrier properties than films with higher content. Films were then prepared with addition of clay nanoparticles and their tensile and barrier properties and glass transition temperature were measured. ANOVA indicated that both glycerol and clay nanoparticles influenced significantly the tensile and barrier properties (P < 0.05), diminishing film permeability when clay nanoparticles were present, while the glass transition temperature was not influenced (P > 0.05). (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study investigates gel polymer electrolytes (GPEs) based on sodium alginate plasticized with glycerol containing either CH3COOH or LiClO4. The membranes showed ionic conductivity results of 3.1 x 10(-4) S/cm for the samples with LiClO4 and 8.7x10(-5) S/cm for the samples with CH3COOH at room temperature. The samples also showed thermal stability up to 160 degrees C, transparency of up to 90%, surface uniformity and adhesion to glass and steel. Moreover, Dynamic Mechanical Analysis revealed two relaxations for both samples and the Ea values were between 18 and 36 kJ/mol. All the results obtained indicate that alginate-based GPEs can be used as electrolytes in electrochemical devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ionic conducting membranes of gelatin plasticized with glycerol and containing LiI/I-2 have been obtained and characterized by X-ray diffraction measurements, UV-Vis-NIR spectroscopy, thermal analysis and impedance spectroscopy. The transparent (80-90% in the visible range) membranes showed ionic conductivity value of 5 x 10(-5) S/cm at room temperature, which increased to 3 x 10(-3) S/cm at 80 degrees C. All the ionic conductivity measurements as a function of temperature showed VTF dependence and activation energy of 8 kJ/mol. These samples also showed low glass transition temperature of -76 degrees C. Moreover the samples were predominantly amorphous. The membranes applied to small electrochromic devices showed 20% of color change from colored to bleached states during more than 70 cronoamperometric cycles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As fibras cerâmicas se caracterizam por ser um material leve, com alto grau de pureza, baixo armazenamento de calor, baixa condutividade térmica, resistência a choque térmico e alta resistência à corrosão em altas temperaturas. Essas características levam a uma grande procura das indústrias mínero-metalúrgicas e de outros setores para revestimentos de distribuidores, muflas, fornos de aquecimentos, entre outros. Após utilização no processo, por perderem sua capacidade de isolamento, os resíduos gerados precisam de destinação. Esse trabalho enfoca, especificamente, resíduos de lã cerâmica e lã de vidro. Pelo fato de a composição das fibras cerâmicas ser rica em sílica e alumina, efetuou-se uma investigação acerca da atividade pozolânica das mesmas com a cal e o cimento, especificamente CPV ARI, CPII E32 e CPIII 32RS, para avaliação da perspectiva de reciclagem em possível incorporação no concreto.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe an approach to ion implantation in which the plasma and its electronics are held at ground potential and the ion beam is injected into a space held at high negative potential, allowing considerable savings both economically and technologically. We used an “inverted ion implanter” of this kind to carry out implantation of gold into alumina, with Au ion energy 40 keV and dose (3–9) × 1016 cm−2. Resistivity was measured in situ as a function of dose and compared with predictions of a model based on percolation theory, in which electron transport in the composite is explained by conduction through a random resistor network formed by Au nanoparticles. Excellent agreement is found between the experimental results and the theory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spark Plasma Sintering (SPS) is a promising rapid consolidation technique that allows a better understanding and manipulating of sintering kinetics and therefore makes it possible to obtain Si3N4-based ceramics with tailored microstructures, consisting of grains with either equiaxed or elongated morphology. The presence of an extra liquid phase is necessary for forming tough interlocking microstructures in Yb/Y-stabilised α-sialon by HP. The liquid is introduced by a new method, namely by increasing the O/N ratio in the general formula RExSi12-(3x+n)Al3x+nOnN16-n while keeping the cation ratios of RE, Si and Al constant. Monophasic α-sialon ceramics with tailored microstructures, consisting of either fine equiaxed or elongated grains, have been obtained by using SPS, whether or not such an extra liquid phase is involved. The three processes, namely densification, phase transformation and grain growth, which usually occur simultaneously during conventional HP consolidation of Si3N4-based ceramics, have been precisely followed and separately investigated in the SPS process. The enhanced densification is attributed to the non-equilibrium nature of the liquid phase formed during heating. The dominating mechanism during densification is the enhanced grain boundary sliding accompanied by diffusion- and/or reaction-controlled processes. The rapid grain growth is ascribed to a dynamic ripening mechanism based on the formation of a liquid phase that is grossly out of equilibrium, which in turn generates an extra chemical driving force for mass transfer. Monophasic α-sialon ceramics with interlocking microstructures exhibit improved damage tolerance. Y/Yb- stabilised monophasic α-sialon ceramics containing approximately 3 vol% liquid with refined interlocking microstructures have excellent thermal-shock resistance, comparable to the best β-sialon ceramics with 20 vol% additional liquid phase prepared by HP. The obtained sialon ceramics with fine-grained microstructure show formidably improved superplasticity in the presence of an electric field. The compressive strain rate reaches the order of 10-2 s-1 at temperatures above 1500oC, that is, two orders of magnitude higher than that has been realised so far by any other conventional approaches. The high deformation rate recorded in this work opens up possibilities for making ceramic components with complex shapes through super-plastic forming.