932 resultados para Generalized Linear-models
Resumo:
In this paper, the generalized log-gamma regression model is modified to allow the possibility that long-term survivors may be present in the data. This modification leads to a generalized log-gamma regression model with a cure rate, encompassing, as special cases, the log-exponential, log-Weibull and log-normal regression models with a cure rate typically used to model such data. The models attempt to simultaneously estimate the effects of explanatory variables on the timing acceleration/deceleration of a given event and the surviving fraction, that is, the proportion of the population for which the event never occurs. The normal curvatures of local influence are derived under some usual perturbation schemes and two martingale-type residuals are proposed to assess departures from the generalized log-gamma error assumption as well as to detect outlying observations. Finally, a data set from the medical area is analyzed.
Resumo:
The concept of Fock space representation is developed to deal with stochastic spin lattices written in terms of fermion operators. A density operator is introduced in order to follow in parallel the developments of the case of bosons in the literature. Some general conceptual quantities for spin lattices are then derived, including the notion of generating function and path integral via Grassmann variables. The formalism is used to derive the Liouvillian of the d-dimensional Linear Glauber dynamics in the Fock-space representation. Then the time evolution equations for the magnetization and the two-point correlation function are derived in terms of the number operator. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The class of symmetric linear regression models has the normal linear regression model as a special case and includes several models that assume that the errors follow a symmetric distribution with longer-than-normal tails. An important member of this class is the t linear regression model, which is commonly used as an alternative to the usual normal regression model when the data contain extreme or outlying observations. In this article, we develop second-order asymptotic theory for score tests in this class of models. We obtain Bartlett-corrected score statistics for testing hypotheses on the regression and the dispersion parameters. The corrected statistics have chi-squared distributions with errors of order O(n(-3/2)), n being the sample size. The corrections represent an improvement over the corresponding original Rao`s score statistics, which are chi-squared distributed up to errors of order O(n(-1)). Simulation results show that the corrected score tests perform much better than their uncorrected counterparts in samples of small or moderate size.
Resumo:
Although the asymptotic distributions of the likelihood ratio for testing hypotheses of null variance components in linear mixed models derived by Stram and Lee [1994. Variance components testing in longitudinal mixed effects model. Biometrics 50, 1171-1177] are valid, their proof is based on the work of Self and Liang [1987. Asymptotic properties of maximum likelihood estimators and likelihood tests under nonstandard conditions. J. Amer. Statist. Assoc. 82, 605-610] which requires identically distributed random variables, an assumption not always valid in longitudinal data problems. We use the less restrictive results of Vu and Zhou [1997. Generalization of likelihood ratio tests under nonstandard conditions. Ann. Statist. 25, 897-916] to prove that the proposed mixture of chi-squared distributions is the actual asymptotic distribution of such likelihood ratios used as test statistics for null variance components in models with one or two random effects. We also consider a limited simulation study to evaluate the appropriateness of the asymptotic distribution of such likelihood ratios in moderately sized samples. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In this article, we consider local influence analysis for the skew-normal linear mixed model (SN-LMM). As the observed data log-likelihood associated with the SN-LMM is intractable, Cook`s well-known approach cannot be applied to obtain measures of local influence. Instead, we develop local influence measures following the approach of Zhu and Lee (2001). This approach is based on the use of an EM-type algorithm and is measurement invariant under reparametrizations. Four specific perturbation schemes are discussed. Results obtained for a simulated data set and a real data set are reported, illustrating the usefulness of the proposed methodology.
Resumo:
We study the optimal “inflation tax” in an environment with heterogeneous agents and non-linear income taxes. We first derive the general conditions needed for the optimality of the Friedman rule in this setup. These general conditions are distinct in nature and more easily interpretable than those obtained in the literature with a representative agent and linear taxation. We then study two standard monetary specifications and derive their implications for the optimality of the Friedman rule. For the shopping-time model the Friedman rule is optimal with essentially no restrictions on preferences or transaction technologies. For the cash-credit model the Friedman rule is optimal if preferences are separable between the consumption goods and leisure, or if leisure shifts consumption towards the credit good. We also study a generalized model which nests both models as special cases.
Resumo:
The Predictive Controller has been receiving plenty attention in the last decades, because the need to understand, to analyze, to predict and to control real systems has been quickly growing with the technological and industrial progress. The objective of this thesis is to present a contribution for the development and implementation of Nonlinear Predictive Controllers based on Hammerstein model, as well as to its make properties evaluation. In this case, in the Nonlinear Predictive Controller development the time-step linearization method is used and a compensation term is introduced in order to improve the controller performance. The main motivation of this thesis is the study and stability guarantee for the Nonlinear Predictive Controller based on Hammerstein model. In this case, was used the concepts of sections and Popov Theorem. Simulation results with literature models shows that the proposed approaches are able to control with good performance and to guarantee the systems stability
Resumo:
The objectives of this study were to compare the goodness of fit of four non-linear growth models, i.e. Brody, Gompertz, Logistic and Von Bertalanffy, in West African Dwarf (WAD) sheep. A total of 5274 monthly weight records from birth up to 180 days of age from 889 lambs, collected during 2001 to 2004 in Betecoucou breeding farm in Benin were used. In the preliminary analysis, the General Linear Model Procedure of the Statistical Analysis Systems Institute was applied to the dataset to identify the significant effects of the sex of lamb (male and female), type of birth (single and twin), season of birth (rainy season and dry season), parity of dam (1, 2 and 3) and year of birth (2001, 2002, 2003 and 2004) on the observed birth weight and monthly weight up to 6 months of age. The models parameters (A, B and k), coefficient of determination (112), mean square error (MSE) were calculated using language of technical computing package Matlab(R), 2006. The mean values of A, B and k were substituted into each model to calculate the corresponding Akaike's Information Criterion (AIC). Among the four growth functions, the Brody model has been selected for its accuracy of fit according to the higher R(2), lower MSE and A/C Finally, the parameters A, B and k were adjusted in Matlab(R) 2006 for the sex of lamb, year of birth, season of birth, birth type and the parity of ewe, providing a specific slope of the Brody growth curve. The results of this study suggest that Brody model can be useful for WAD sheep breeding in Betecoucou farm conditions through growth monitoring.
Resumo:
Objetivou-se com este trabalho, desenvolver modelos de programação não-linear para sistematização de terras, aplicáveis para áreas com formato regular e que minimizem a movimentação de terra, utilizando o software GAMS para o cálculo. Esses modelos foram comparados com o Método dos Quadrados Mínimos Generalizado, desenvolvido por Scaloppi & Willardson (1986), sendo o parâmetro de avaliação o volume de terra movimentado. Concluiu-se que, ambos os modelos de programação não-linear desenvolvidos nesta pesquisa mostraram-se adequados para aplicação em áreas regulares e forneceram menores valores de movimentação de terra quando comparados com o método dos quadrados mínimos.
Resumo:
In this work we present nonlinear models in two-dimensional space-time of two interacting scalar fields in the Lorentz and CPT violating scenarios. We discuss the soliton solutions for these models as well as the question of stability for them. This is done by generalizing a model recently published by Barreto and collaborators and also by getting new solutions for the model introduced by them.
Resumo:
The construction of a class of non-abelian Toda models admiting dyonic type soliton solutions is reviewed.
Resumo:
We consider a real Lagrangian off-critical submodel describing the soliton sector of the so-called conformal affine sl(3)((1)) Toda model coupled to matter fields. The theory is treated as a constrained system in the context of Faddeev-Jackiw and the symplectic schemes. We exhibit the parent Lagrangian nature of the model from which generalizations of the sine-Gordon (GSG) or the massive Thirring (GMT) models are derivable. The dual description of the model is further emphasized by providing the relationships between bilinears of GMT spinors and relevant expressions of the GSG fields. In this way we exhibit the strong/weak coupling phases and the (generalized) soliton/particle correspondences of the model. The sl(n)((1)) case is also outlined. (C) 2002 American Institute of Physics.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)