977 resultados para Gauss-Bonnet theorem
Resumo:
Support vector machines (SVMs), though accurate, are not preferred in applications requiring high classification speed or when deployed in systems of limited computational resources, due to the large number of support vectors involved in the model. To overcome this problem we have devised a primal SVM method with the following properties: (1) it solves for the SVM representation without the need to invoke the representer theorem, (2) forward and backward selections are combined to approach the final globally optimal solution, and (3) a criterion is introduced for identification of support vectors leading to a much reduced support vector set. In addition to introducing this method the paper analyzes the complexity of the algorithm and presents test results on three public benchmark problems and a human activity recognition application. These applications demonstrate the effectiveness and efficiency of the proposed algorithm.
--------------------------------------------------------------------------------
Resumo:
A novel hardware architecture for elliptic curve cryptography (ECC) over GF(p) is introduced. This can perform the main prime field arithmetic functions needed in these cryptosystems including modular inversion and multiplication. This is based on a new unified modular inversion algorithm that offers considerable improvement over previous ECC techniques that use Fermat's Little Theorem for this operation. The processor described uses a full-word multiplier which requires much fewer clock cycles than previous methods, while still maintaining a competitive critical path delay. The benefits of the approach have been demonstrated by utilizing these techniques to create a field-programmable gate array (FPGA) design. This can perform a 256-bit prime field scalar point multiplication in 3.86 ms, the fastest FPGA time reported to date. The ECC architecture described can also perform four different types of modular inversion, making it suitable for use in many different ECC applications. © 2006 IEEE.
Resumo:
An approximate Kohn-Sham (KS) exchange potential v(xsigma)(CEDA) is developed, based on the common energy denominator approximation (CEDA) for the static orbital Green's function, which preserves the essential structure of the density response function. v(xsigma)(CEDA) is an explicit functional of the occupied KS orbitals, which has the Slater v(Ssigma) and response v(respsigma)(CEDA) potentials as its components. The latter exhibits the characteristic step structure with "diagonal" contributions from the orbital densities \psi(isigma)\(2), as well as "off-diagonal" ones from the occupied-occupied orbital products psi(isigma)psi(j(not equal1)sigma). Comparison of the results of atomic and molecular ground-state CEDA calculations with those of the Krieger-Li-Iafrate (KLI), exact exchange (EXX), and Hartree-Fock (HF) methods show, that both KLI and CEDA potentials can be considered as very good analytical "closure approximations" to the exact KS exchange potential. The total CEDA and KLI energies nearly coincide with the EXX ones and the corresponding orbital energies epsilon(isigma) are rather close to each other for the light atoms and small molecules considered. The CEDA, KLI, EXX-epsilon(isigma) values provide the qualitatively correct order of ionizations and they give an estimate of VIPs comparable to that of the HF Koopmans' theorem. However, the additional off-diagonal orbital structure of v(xsigma)(CEDA) appears to be essential for the calculated response properties of molecular chains. KLI already considerably improves the calculated (hyper)polarizabilities of the prototype hydrogen chains H-n over local density approximation (LDA) and standard generalized gradient approximations (GGAs), while the CEDA results are definitely an improvement over the KLI ones. The reasons of this success are the specific orbital structures of the CEDA and KLI response potentials, which produce in an external field an ultranonlocal field-counteracting exchange potential. (C) 2002 American Institute of Physics.
Resumo:
We restate the notion of orthogonal calculus in terms of model categories. This provides a cleaner set of results and makes the role of O(n)-equivariance clearer. Thus we develop model structures for the category of n-polynomial and n-homogeneous functors, along with Quillen pairs relating them. We then classify n-homogeneous functors, via a zig-zag of Quillen equivalences, in terms of spectra with an O(n)-action. This improves upon the classification theorem of Weiss. As an application, we develop a variant of orthogonal calculus by replacing topological spaces with orthogonal spectra.
Resumo:
In order to assess qualitatively the ejecta geometry of stripped-envelope core-collapse supernovae (SNe), we investigate 98 late-time spectra of 39 objects, many of them previously unpublished. We perform a Gauss-fitting of the [O ] ??6300, 6364 feature in all spectra, with the position, full width at half maximum and intensity of the ?6300 Gaussian as free parameters, and the ?6364 Gaussian added appropriately to account for the doublet nature of the [O ] feature. On the basis of the best-fitting parameters, the objects are organized into morphological classes, and we conclude that at least half of all Type Ib/c SNe must be aspherical. Bipolar jet models do not seem to be universally applicable, as we find too few symmetric double-peaked [O ] profiles. In some objects, the [O ] line exhibits a variety of shifted secondary peaks or shoulders, interpreted as blobs of matter ejected at high velocity and possibly accompanied by neutron-star kicks to assure momentum conservation. At phases earlier than ~200 d, a systematic blueshift of the [O ] ??6300, 6364 line centroids can be discerned. Residual opacity provides the most convincing explanation of this phenomenon, photons emitted on the rear side of the SN being scattered or absorbed on their way through the ejecta. Once modified to account for the doublet nature of the oxygen feature, the profile of Mg i] ?4571 at sufficiently late phases generally resembles that of [O ] ??6300, 6364, suggesting negligible contamination from other lines and confirming that O and Mg are similarly distributed within the ejecta. © 2009 RAS.
Resumo:
Purpose: To investigate the temporal course of corneal sensitivity loss & the role of aldose reductase inhibitors (ARI) in an animal model of diabetic ocular complications. Methods: Weanling male S-D rats were randomly grouped to received ad libitum water & diet consisting of Purina (#5001) w/ either: 50% starch (CON,n=15) or 50% D-galactose (GAL,n=30). Half the galactosemic rats (ARI,n=15) received topical 0.25% CT-112 (3x daily, 20µl, Senju Pharmaceutical Co., Japan). Control & remaining half of the galactosemic animals received equivalent doses of saline eyedrops. Rats were restrained w/o medication during sensitivity measurements conducted w/ a Cochet-Bonnet Aesthesiometer mounted on a micromanipulator. The end of the filament (0.012mm dia.), which applied a mean pressure of 0.96 g/mm perpendicular to the corneal surface at center, was in the plane of focus of a slit-lamp biomicroscope. Measurements were conducted by two investigators which were masked to the treatment group. The average blink-responses from 10 consecutive stimuli to each cornea were expressed as a percent. Results: Mean (±SD) baseline corneal sensitivity in all groups were similar (CON 73%±11, GAL 71%±15, ARI 74%±16). Corneal sensitivity in the galactosemic rat was decreased (p
Resumo:
The standard model for the origin of galactic magnetic fields is through the amplification of seed fields via dynamo or turbulent processes to the level consistent with present observations. Although other mechanisms may also operate, currents from misaligned pressure and temperature gradients (the Biermann battery process) inevitably accompany the formation of galaxies in the absence of a primordial field. Driven by geometrical asymmetries in shocks associated with the collapse of protogalactic structures, the Biermann battery is believed to generate tiny seed fields to a level of about 10 gauss (refs 7, 8). With the advent of high-power laser systems in the past two decades, a new area of research has opened in which, using simple scaling relations, astrophysical environments can effectively be reproduced in the laboratory. Here we report the results of an experiment that produced seed magnetic fields by the Biermann battery effect. We show that these results can be scaled to the intergalactic medium, where turbulence, acting on timescales of around 700 million years, can amplify the seed fields sufficiently to affect galaxy evolution.
Resumo:
This paper estimates the marginal willingness-to-pay for attributes of a hypothetical HIV vaccine using discrete choice modeling. We use primary data from 326 respondents from Bangkok and Chiang Mai, Thailand, in 2008–2009, selected using purposive, venue-based sampling across two strata. Participants completed a structured questionnaire and full rank discrete choice modeling task administered using computer-assisted personal interviewing. The choice experiment was used to rank eight hypothetical HIV vaccine scenarios, with each scenario comprising seven attributes (including cost) each of which had two levels. The data were analyzed in two alternative specifications: (1) best-worst; and (2) full-rank, using logit likelihood functions estimated with custom routines in Gauss matrix programming language. In the full-rank specification, all vaccine attributes are significant predictors of probability of vaccine choice. The biomedical attributes of the hypothetical HIV vaccine (efficacy, absence of VISP, absence of side effects, and duration of effect) are the most important attributes for HIV vaccine choice. On average respondents are more than twice as likely to accept a vaccine with 99% efficacy, than a vaccine with 50% efficacy. This translates to a willingness to pay US$383 more for a high efficacy vaccine compared with the low efficacy vaccine. Knowledge of the relative importance of determinants of HIV vaccine acceptability is important to ensure the success of future vaccination programs. Future acceptability studies of hypothetical HIV vaccines should use more finely grained biomedical attributes, and could also improve the external validity of results by including more levels of the cost attribute.
Resumo:
We investigate the conditions under which the trace distance between two different states of a given open system increases in time due to the interaction with an environment, therefore signaling non-Markovianity. We find that the finite-time difference in trace distance is bounded by two sharply defined quantities that are strictly linked to the occurrence of system-environment correlations created throughout their interaction and affecting the subsequent evolution of the system. This allows us to shed light on the origin of non-Markovian behaviors in quantum dynamics. We best illustrate our findings by tackling two physically relevant examples: a non-Markovian dephasing mechanism that has been the focus of a recent experimental endeavor and the open-system dynamics experienced by a spin connected to a finite-size quantum spin chain.
Resumo:
The ability to predict the mechanical behavior of polymer composites is crucial for their design and manufacture. Extensive studies based on both macro- and micromechanical analyses are used to develop new insights into the behavior of composites. In this respect, finite element modeling has proved to be a particularly powerful tool. In this article, we present a Galerkin scheme in conjunction with the penalty method for elasticity analyses of different types of polymer composites. In this scheme, the application of Green's theorem to the model equation results in the appearance of interfacial flux terms along the boundary between the filler and polymer matrix. It is shown that for some types of composites these terms significantly affect the stress transfer between polymer and fillers. Thus, inclusion of these terms in the working equations of the scheme preserves the accuracy of the model predictions. The model is used to predict the most important bulk property of different types of composites. Composites filled with rigid or soft particles, and composites reinforced with short or continuous fibers are investigated. For each case, the results are compared with the available experimental results and data obtained from other models reported in the literature. Effects of assumptions made in the development of the model and the selection of the prescribed boundary conditions are discussed.
Resumo:
We introduce the concept of cloning for classes of observables and classify cloning machines for qubit systems according to the number of parameters needed to describe the class under investigation. A no-cloning theorem for observables is derived and the connections between cloning of observables and joint measurements of noncommuting observables are elucidated. Relationships with cloning of states and non-demolition measurements are also analysed.
Resumo:
We investigate the violation of local realism in Bell tests involving homodyne measurements performed on multimode continuous-variable states. By binning the measurement outcomes in an appropriate way, we prove that the Mermin-Klyshko inequality can be violated by an amount that grows exponentially with the number of modes. Furthermore, the maximum violation allowed by quantum mechanics can be attained for any number of modes, albeit requiring a quantum state whose generation is hardly practicable. Interestingly, this exponential increase of the violation holds true even for simpler states, such as multipartite GHZ states. The resulting benefit of using more modes is shown to be significant in practical multipartite Bell tests by analyzing the increase of the robustness to noise with the number of modes. In view of the high efficiency achievable with homodyne detection, our results thus open a possible way to feasible loophole-free Bell tests that are robust to experimental imperfections. We provide an explicit example of a three-mode state (a superposition of coherent states) which results in a significantly high violation of the Mermin-Klyshko inequality (around 10%) with homodyne measurements.
Resumo:
Out-of-equilibrium statistical mechanics is attracting considerable interest due to the recent advances in the control and manipulations of systems at the quantum level. Recently, an interferometric scheme for the detection of the characteristic function of the work distribution following a time-dependent process has been proposed [L. Mazzola et al., Phys. Rev. Lett. 110 (2013) 230602]. There, it was demonstrated that the work statistics of a quantum system undergoing a process can be reconstructed by effectively mapping the characteristic function of work on the state of an ancillary qubit. Here, we expand that work in two important directions. We first apply the protocol to an interesting specific physical example consisting of a superconducting qubit dispersively coupled to the field of a microwave resonator, thus enlarging the class of situations for which our scheme would be key in the task highlighted above. We then account for the interaction of the system with an additional one (which might embody an environment), and generalize the protocol accordingly.