920 resultados para GRAVITY THEORIES
Resumo:
The in situ real time measurement of the regression rate of a melting interface (RRMI) is performed by the ultrasonic measurement system reported here. The RRMI is the rate at which a solid/liquid interface (SLI) moves along a metallic rod while burning in an oxygen-enriched atmosphere and is an important flatnmability indicator. The ultrasonic transducer and associated equipment used to drive the transducer and record the echo signal is described, along with the process that transforms the acquired signals into a RRMI value. Test rods of various metals and geometric shapes were burned at several test conditions in different test facilities. The RRMI results with quantified errors are presented and reviewed. The effect of reduced gravity on burning metals is important to space-applications and RRMI results obtained in a reduced gravity environment are also presented.
Resumo:
Standard upward-burning promoted ignition tests (“Standard Test Method for Determining the Combustion Behavior of Metallic Materials in Oxygen-Enriched Atmospheres,” ASTM G4-124 [1] or “Flammability, Odor, Offgassing, and Compatibility Requirements and Test Procedures for Materials in Environments that Support Combustion,” NASA-STD-6001, NASA Test 17 [2]) were performed on cylindrical iron (99.95% pure) rods in various oxygen purities (95.0–99.98%) in reduced gravity onboard NASA JSC's KC-135 to investigate the effect of gravity on the regression rate of the melting interface. Visual analysis of experiments agrees with previous published observations showing distinct motions of the molten mass attached to the solid rod during testing. Using an ultrasonic technique to record the real-time rod length, comparison of the instantaneous regression rate of the melting interface and visual recording shows a non-steady-state regression rate of the melting interface for the duration of a test. Precessional motion is associated with a higher regression rate of the melting interface than for test periods in which the molten mass does not show lateral motion. The transition between the two types of molten mass motion during a test was accompanied by a reduced regression rate of the melting interface, approximately 15–50% of the average regression rate of the melting interface for the entire test.
Resumo:
In this thesis we study at perturbative level correlation functions of Wilson loops (and local operators) and their relations to localization, integrability and other quantities of interest as the cusp anomalous dimension and the Bremsstrahlung function. First of all we consider a general class of 1/8 BPS Wilson loops and chiral primaries in N=4 Super Yang-Mills theory. We perform explicit two-loop computations, for some particular but still rather general configuration, that confirm the elegant results expected from localization procedure. We find notably full consistency with the multi-matrix model averages, obtained from 2D Yang-Mills theory on the sphere, when interacting diagrams do not cancel and contribute non-trivially to the final answer. We also discuss the near BPS expansion of the generalized cusp anomalous dimension with L units of R-charge. Integrability provides an exact solution, obtained by solving a general TBA equation in the appropriate limit: we propose here an alternative method based on supersymmetric localization. The basic idea is to relate the computation to the vacuum expectation value of certain 1/8 BPS Wilson loops with local operator insertions along the contour. Also these observables localize on a two-dimensional gauge theory on S^2, opening the possibility of exact calculations. As a test of our proposal, we reproduce the leading Luscher correction at weak coupling to the generalized cusp anomalous dimension. This result is also checked against a genuine Feynman diagram approach in N=4 super Yang-Mills theory. Finally we study the cusp anomalous dimension in N=6 ABJ(M) theory, identifying a scaling limit in which the ladder diagrams dominate. The resummation is encoded into a Bethe-Salpeter equation that is mapped to a Schroedinger problem, exactly solvable due to the surprising supersymmetry of the effective Hamiltonian. In the ABJ case the solution implies the diagonalization of the U(N) and U(M) building blocks, suggesting the existence of two independent cusp anomalous dimensions and an unexpected exponentation structure for the related Wilson loops.
Resumo:
Poly(ε-caprolactone) (PCL) fibers produced by wet spinning from solutions in acetone under low-shear (gravity-flow) conditions resulted in fiber strength of 8 MPa and stiffness of 0.08 Gpa. Cold drawing to an extension of 500% resulted in an increase in fiber strength to 43 MPa and stiffness to 0.3 GPa. The growth rate of human umbilical vein endothelial cells (HUVECs) (seeded at a density of 5 × 104 cells/mL) on as-spun fibers was consistently lower than that measured on tissue culture plastic (TCP) beyond day 2. Cell proliferation was similar on gelatin-coated fibers and TCP over 7 days and higher by a factor of 1.9 on 500% cold-drawn PCL fibers relative to TCP up to 4 days. Cell growth on PCL fibers exceeded that on Dacron monofilament by at least a factor of 3.7 at 9 days. Scanning electron microscopy revealed formation of a cell layer on samples of cold-drawn and gelatin-coated fibers after 24 hours in culture. Similar levels of ICAM-1 expression by HUVECs attached to PCL fibers and TCP were measured using RT-PCR and flow cytometry, indicative of low levels of immune activation. Retention of a specific function of HUVECs attached to PCL fibers was demonstrated by measuring their immune response to lipopolysaccharide. Levels of ICAM-1 expression increased by approximately 11% in cells attached to PCL fibers and TCP. The high fiber compliance, favorable endothelial cell proliferation rates, and retention of an important immune response of attached HUVECS support the use of gravity spun PCL fibers for three-dimensional scaffold production in vascular tissue engineering. © Mary Ann Liebert, Inc.
Resumo:
This investigation explores the effects of organizational identification on employees’ Implicit Leadership Theories (ILTs) and the perception of leader behaviors. The study involved a cross-sectional survey of 439 employees from seven companies based in South Wales. Respondents completed two questionnaires that measured their organizational identification, ILTs, recognition of ILTs in their manager, manager’s leadership behaviors (transactional and transformational), and psychological reactions (job satisfaction, well-being, and turnover intentions). The level of organizational identification did not affect the prototype of an ideal work-based leader. However, high organizational identification was associated with more positive ratings on the actual manager, the extent to which their manager displayed transactional and transformational behaviors, and with more positive psychological reactions to work. Employees high in organizational identification based their judgments of their leader’s transactional and transformational behaviors on the extent to which they recognized their leader as possessing leadership traits. However, those low on organizational identification allowed their prototype of their ideal leader to bias their judgment of their actual leader’s behavior. Finally, there was partial support for the augmenting hypothesis (that tranformational leadership would predict additional variance in psychological outcomes above that predicted by transactional leadership) for those high in organizational identification but not for those low in organizational identification.