985 resultados para GLASSY-CARBON ELECTRODE


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Catalyst support materials exhibit great influence on the performance and durability of proton exchange membrane (PEM) fuel cells. This minireview article summarises recent developments into carbon nanotube-based support materials for PEM fuel cells, including the membrane electrode assembly (MEA). The advantages of using CNTs to promote catalyst performance and stability, a perspective on research directions and strategies to improve fuel cell performance and durability are discussed. It is hoped that this minireview will act as a conduit for future developments in catalyst supports and MEA design for PEM fuel cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In its conducting form, carbon has proven to be a versatile, robust and high performing electrode material in areas such as energy conversion, energy storage and even medical bionics. In our laboratories we have been interested in the fabrication and utilization of nanostructured electrodes based on more recently discovered forms of carbon. These include carbon nanotubes and graphene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Porous carbon nanotube/polyvinylidene fluoride (CNT/PVDF) composite material can be fabricated via formation and freeze-drying of a gel. The field emission scanning electron microscopy, nitrogen adsorption-desorption and pore size distribution analysis reveal that the introduction of a small amount of carbon nanotubes (CNTs) can effectively increase the surface roughness and porosity of polyvinylidene fluoride (PVDF). Contact angle measurements of water and oil indicate that the as-obtained composite material is superhydrophobic and superoleophilic. Further experiments demonstrate that these composite material can be efficiently used to separate/absorb the insoluble oil from oil polluted water as membrane/absorbent. Most importantly, the electrical conductivity of such porous CNT/PVDF composite material can be tuned by adjusting the mass ratio of CNT to PVDF without obviously changing the superhydrophobicity or superoleophilicity. The unique properties of the porous CNT/PVDF composite material make it a promising candidate for oil-polluted water treatment as well as water-repellent catalyst-supporting electrode material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chemical doping with foreign atoms is an effective approach to significantly enhance the electrochemical performance of the carbon materials. Herein, sulfur-doped three-dimensional (3D) porous reduced graphene oxide (RGO) hollow nanosphere frameworks (S-PGHS) are fabricated by directly annealing graphene oxide (GO)-encapsulated amino-modified SiO2 nanoparticles with dibenzyl disulfide (DBDS), followed by hydrofluoric acid etching. The XPS and Raman spectra confirmed that sulfur atoms were successfully introduced into the PGHS framework via covalent bonds. The as-prepared S-PGHS has been demonstrated to be an efficient metal-free electrocatalyst for oxygen reduction reaction (ORR) with the activity comparable to that of commercial Pt/C (40%) and much better methanol tolerance and durability, and to be a supercapacitor electrode material with a high specific capacitance of 343 F g(-1), good rate capability and excellent cycling stability in aqueous electrolytes. The impressive performance for ORR and supercapacitors is believed to be due to the synergistic effect caused by sulfur-doping enhancing the electrochemical activity and 3D porous hollow nanosphere framework structures facilitating ion diffusion and electronic transfer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Composite LiFe0.4Mn0.6PO4/C microspheres are considered advanced cathode materials for electric vehicles and other high-energy density applications due to their advantages of high energy density and excellent cycling stability. LiFe0.4Mn0.6PO4/C microspheres have been produced using a double carbon coating process employing traditional industrial techniques (ball milling, spray-drying and annealing). The obtained LiFe0.4Mn0.6PO4 microspheres exhibit a high discharge capacity of around 166 mA h g-1 at 0.1 C and excellent rate capabilities of 132, 103, and 72 mA h g-1 at 5, 10, and 20 C, respectively. A reversible capacity of about 152 mA h g-1 after 500 cycles at a current density of 1 C indicates an outstanding cycling stability. The excellent electrochemical performance is attributed to the micrometer-sized spheres of double carbon-coated LiFe0.4Mn0.6PO4 nanoparticles with improved electric conductivity and higher Li ion diffusion coefficients, ensuring full redox reactions of all nanoparticles. The results show that the advanced high-energy density cathode materials can be produced using existing industry techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrode materials are being developed to realise sodium-ion batteries that can provide energy storage solutions. Here, we develop amorphous carbon coated Na7Fe7(PO4)6F3, prepared by combining hydrothermal and solid state reaction methods, as an insertion electrode for sodium-ion batteries applications. Na7Fe7(PO4)6F3 particles are surrounded by a thin layer (∼1.5–2 nm) of amorphous carbon. The Na7Fe7(PO4)6F3/C composite cathode undergoes reversible sodium intercalation/de-intercalation with an average operational potential of ∼3.0 V (vs Na+/Na). This cathode has a capacity of 65 mA h g−1 at 100 mA g−1 current after 60 cycles and features twice higher capacity than that of an uncoated Na7Fe7(PO4)6F3 sample. Therefore, the carbon-coated Na7Fe7(PO4)6F3 composite presents feasible sodium intercalation/de-intercalation capacity, offering possibilities for developing a low cost, high performance sodium-ion battery positive electrode.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As an electrical double layer capacitor, dry-spun carbon nanotube yarn possesses relatively low specific capacitance. This can be significantly increased as a result of the pseudocapacitance of functional groups on the carbon nanotubes developed by oxidation using a gamma irradiation treatment in the presence of air. When coated with high-performance polyaniline nanowires, the gamma-irradiated carbon nanotube yarn acts as a high-strength reinforcement and a high-efficiency current collector in two-ply yarn supercapacitors for transporting charges generated along the long electrodes. The resulting supercapacitors demonstrate excellent electrochemical performance, cycle stability, and resistance to folding-unfolding that are required in wearable electronic textiles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel hierarchical MnO2/carbon strip (MnO2/C) microsphere is synthesized via galvanostatic charge-discharge of a MnO@C matrix precursor where the carbon is from a low-cost citric acid. This hierarchical structure is composed of manganese oxides nanoflakes and inlaid carbon strips. The ultrathin nanoflakes assemble to form porous microspheres with a rippled surface superstructure. Due to its improved conductivity and remarkable increased phase contact area, this novel structure exhibits an excellent electrochemical performance with a specific capacitance of 485.6 F g -1 at a current density of 0.5 A g-1 and an area capacitance as high as 4.23 F cm-2 at a mass loading of 8.7 mg cm-2. It also shows an excellent cycling stability with 88.9% capacity retention after 1000 cycles. It is speculated that the present low-cost novel hierarchical porous microspheres can serve as a promising electrode material for pseudocapacitors. © 2014 American Chemical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

h-In2O3/carbon nanocomposites were obtained via a facile ball milling process from a mixture of h-In2O3 nanoparticles and Super P carbon. Compared to pure h-In2O3 nanoparticles, the nanocomposites exhibited an initial discharge capacity of 1360 mAh g-1, a stable reversible capacity of 867 mAh g-1 after 100 cycles as well as a high coulombic efficiency of 99%. The superior lithium-ion battery performance can be attributed to the specific structure of h-In2O3 and the uniform and continuous nano-carbon coating layers. The nano-carbon coating could protect the inner active materials from fragmentation and increase the electronic conductivity. This study not only provides a promising electrode material for high-performance lithium-ion batteries, but also further demonstrates a straightforward, effective and environmental friendly process for synthesizing nanocomposites. © 2014 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Some of the prospective electrode materials for lithium-ion batteries are known to have electronic transport limitations preventing them from being used in the electrodes directly. In many cases, however, these materials may become practical if they are applied in the form of nanocomposites with a carbon component, e.g. via incorporating nanoparticles of the phase of interest into a conducting network of carbon nanotubes. A simple way to prepare oxide-carbon nanotube composites suitable for the electrodes of lithium-ion batteries is presented in this paper. The method is based on low-energy ball milling. An electrochemically active but insulating phase of LiFeTiO4 is used as a test material. It is demonstrated that the LiFeTiO4-carbon nanotube composite is not only capable of having significantly higher capacity (∼105-120 mA h g-1vs. the capacity of ∼65-70 mA h g -1 for the LiFeTiO4 nanoparticles) at a slow current rate but may also operate at reasonably high current rates. © the Partner Organisations 2014.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The successful commercialization of smart wearable garments is hindered by the lack of fully integrated carbon-based energy storage devices into smart wearables. Since electrodes are the active components that determine the performance of energy storage systems, it is important to rationally design and engineer hierarchical architectures atboth the nano- and macroscale that can enjoy all of the necessary requirements for a perfect electrode. Here we demonstrate a large-scale flexible fabrication of highly porous high-performance multifunctional graphene oxide (GO) and rGO fibers and yarns by taking advantage of the intrinsic soft self-assembly behavior of ultralarge graphene oxide liquid crystalline dispersions. The produced yarns, which are the only practical form of these architectures for real-life device applications, were found to be mechanically robust (Young's modulus in excess of 29 GPa) and exhibited high native electrical conductivity (2508 ± 632 S m(-1)) and exceptionally high specific surface area (2605 m(2) g(-1) before reduction and 2210 m(2) g(-1) after reduction). Furthermore, the highly porous nature of these architectures enabled us to translate the superior electrochemical properties of individual graphene sheets into practical everyday use devices with complex geometrical architectures. The as-prepared final architectures exhibited an open network structure with a continuous ion transport network, resulting in unrivaled charge storage capacity (409 F g(-1) at 1 A g(-1)) and rate capability (56 F g(-1) at 100 A g(-1)) while maintaining their strong flexible nature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the development of a stacked electrode supercapacitor cell using stainless steel meshes as the current collectors and optimised single walled nanotubes (SWNT)-microwave exfoliated graphene oxide (mw rGO) composites as the electrode material. The introduction of mw rGO into a SWNT matrix creates an intertwined porous structure that enhances the electroactive surface area and capacitive performance due to the 3-D hierarchical structure that is formed. The composite structure was optimised by varying the weight ratio of the SWNTs and mw rGO. The best performing ratio was the 90% SWNT-10% mw rGO electrode which achieved a specific capacitance of 306 F g-1 (3 electrode measurement calculated at 20 mV s-1). The 90% SWNT-10% mw rGO was then fabricated into a stacked electrode configuration (SEC) which significantly enhanced the electrode performance per volume (1.43 mW h cm-3, & 6.25 W cm-3). Device testing showed excellent switching capability up to 10 A g-1, and very good stability over 10000 cycles at 1.0 A g-1 with 93% capacity retention. © the Partner Organisations 2014.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flexible energy devices with high performance and long-term stability are highly promising for applications in portable electronics, but remain challenging to develop. As an electrode material for pseudo-supercapacitors, conducting polymers typically show higher energy storage ability over carbon materials and larger conductivity than transition-metal oxides. However, conducting polymer-based supercapacitors often have poor cycling stability, attributable to the structural rupture caused by the large volume contrast between doping and de-doping states, which has been the main obstacle to their practical applications. Herein, we report a simple method to prepare a flexible, binder-free, self-supported polypyrrole (PPy) supercapacitor electrode with high cycling stability through using novel, hollow PPy nanofibers with porous capsular walls as a film-forming material. The unique fiber structure and capsular walls provide the PPy film with enough free-space to adapt to volume variation during doping/de-doping, leading to super-high cycling stability (capacitance retention > 90% after 11000 charge-discharge cycles at a high current density of 10 A g-1) and high rate capability (capacitance retention ∼ 82.1% at a current density in the range of 0.25-10 A g-1).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Liquid plasma, produced by nanosecond pulses, provides an efficient and simple way to fabricate a nanocomposite architecture of Co3O4/CNTs from carbon nanotubes (CNTs) and clusters of Co3O4 nanoparticles in deionized water. The crucial feature of the composite's structure is that Co3O4 nanoparticle clusters are uniformly dispersed and anchored to CNT networks in which Co3O4 guarantees high electrochemical reactivity towards sodium, and CNTs provide conductivity and stabilize the anode structure. We demonstrated that the Co3O4/CNT nanocomposite is capable of delivering a stable and high capacity of 403 mA h g(-1) at 50 mA g(-1) after 100 cycles where the sodium uptake/extract is confirmed in the way of reversible conversion reaction by adopting ex situ techniques. The rate capability of the composite is significantly improved and its reversible capacity is measured to be 212 mA h g(-1) at 1.6 A g(-1) and 190 mA h g(-1) at 3.2 A g(-1), respectively. Due to the simple synthesis technique with high electrochemical performance, Co3O4/CNT nanocomposites have great potential as anode materials for sodium-ion batteries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe an alternative electrochemical technique to monitor covalent bond formation in real-time using nanoparticle-electrode collisions. The method is based on recognising the redox current when MP-11 functionalised chemical reduced graphene oxide (rGO) nanosheets collide with Lomant's reagent modified gold microelectrode. This facile and highly sensitive monitoring method can be useful for investigating the fundamental of single-molecule reactions.