873 resultados para Fusion, Gymnotiformes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poster presented at the 7th iMed.ULisboa Postgraduate Students Meeting. Lisbon, 15 July 2015

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is a non-final version of an article published in final form in AIDS. 2016 Jul 17;30(11):1691-701.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To investigate whether UL43 protein, which is highly conserved in alpha- and gamma herpes viruses, and a non-glycosylated transmembrane protein, is involved in virus entry and virus-induced cell fusion. Methods: Mutagenesis was accomplished by a markerless two-step Red recombination mutagenesis system implemented on the Herpes simplex virus 1 (HSV-1) bacterial artificial chromosome (BAC). Growth properties of HSV-1 UL43 mutants were analyzed using plaque morphology and one-step growth kinetics. SDS-PAGE and Western blot was employed to assay the synthesis of the viral glycoproteins. Virus-penetration was assayed to determine if UL43 protein is required for efficient virus entry. Results: Lack of UL43 expression resulted in significantly reduced plaque sizes of syncytial mutant viruses and inhibited cell fusion induced by gBΔ28 or gKsyn20 (p < 0.05). Deletion of UL43 did not affect overall expression levels of viral glycoproteins gB, gC, gD, and gH on HSV-1(F) BAC infected cell surfaces. Moreover, mutant viruses lacking UL43 gene exhibited slower kinetics of entry into Vero cells than the parental HSV-1(F) BAC. Conclusion: Thus, these results suggest an important role for UL43 protein in mediating virus-induced membrane fusion and efficient entry of virion into target cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To evaluate and compare the performance of Ripplet Type-1 transform and directional discrete cosine transform (DDCT) and their combinations for improved representation of MRI images while preserving its fine features such as edges along the smooth curves and textures. Methods: In a novel image representation method based on fusion of Ripplet type-1 and conventional/directional DCT transforms, source images were enhanced in terms of visual quality using Ripplet and DDCT and their various combinations. The enhancement achieved was quantified on the basis of peak signal to noise ratio (PSNR), mean square error (MSE), structural content (SC), average difference (AD), maximum difference (MD), normalized cross correlation (NCC), and normalized absolute error (NAE). To determine the attributes of both transforms, these transforms were combined to represent the entire image as well. All the possible combinations were tested to present a complete study of combinations of the transforms and the contrasts were evaluated amongst all the combinations. Results: While using the direct combining method (DDCT) first and then the Ripplet method, a PSNR value of 32.3512 was obtained which is comparatively higher than the PSNR values of the other combinations. This novel designed technique gives PSNR value approximately equal to the PSNR’s of parent techniques. Along with this, it was able to preserve edge information, texture information and various other directional image features. The fusion of DDCT followed by the Ripplet reproduced the best images. Conclusion: The transformation of images using Ripplet followed by DDCT ensures a more efficient method for the representation of images with preservation of its fine details like edges and textures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A camera maps 3-dimensional (3D) world space to a 2-dimensional (2D) image space. In the process it loses the depth information, i.e., the distance from the camera focal point to the imaged objects. It is impossible to recover this information from a single image. However, by using two or more images from different viewing angles this information can be recovered, which in turn can be used to obtain the pose (position and orientation) of the camera. Using this pose, a 3D reconstruction of imaged objects in the world can be computed. Numerous algorithms have been proposed and implemented to solve the above problem; these algorithms are commonly called Structure from Motion (SfM). State-of-the-art SfM techniques have been shown to give promising results. However, unlike a Global Positioning System (GPS) or an Inertial Measurement Unit (IMU) which directly give the position and orientation respectively, the camera system estimates it after implementing SfM as mentioned above. This makes the pose obtained from a camera highly sensitive to the images captured and other effects, such as low lighting conditions, poor focus or improper viewing angles. In some applications, for example, an Unmanned Aerial Vehicle (UAV) inspecting a bridge or a robot mapping an environment using Simultaneous Localization and Mapping (SLAM), it is often difficult to capture images with ideal conditions. This report examines the use of SfM methods in such applications and the role of combining multiple sensors, viz., sensor fusion, to achieve more accurate and usable position and reconstruction information. This project investigates the role of sensor fusion in accurately estimating the pose of a camera for the application of 3D reconstruction of a scene. The first set of experiments is conducted in a motion capture room. These results are assumed as ground truth in order to evaluate the strengths and weaknesses of each sensor and to map their coordinate systems. Then a number of scenarios are targeted where SfM fails. The pose estimates obtained from SfM are replaced by those obtained from other sensors and the 3D reconstruction is completed. Quantitative and qualitative comparisons are made between the 3D reconstruction obtained by using only a camera versus that obtained by using the camera along with a LIDAR and/or an IMU. Additionally, the project also works towards the performance issue faced while handling large data sets of high-resolution images by implementing the system on the Superior high performance computing cluster at Michigan Technological University.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Résumé : Cette étude cherche à déconstruire l’idée selon laquelle, dans l’œuvre de l’auteure Agustina Bessa-Luís, une caractérisation forte des personnages féminins conduit nécessairement à un effacement et à une absence de figures masculines fortes, ceci afin de démontrer que, la zone d’ombre dans laquelle ces hommes s’inscrivent, est symptomatique de ce que l’auteure définit comme le « refus d’un destin » au masculin. En effet, en dépeignant des personnages masculins fuyants et « borderline », l’auteure révèle chez ses personnages de papier un trouble dans le genre, lié à une « désorientation » résolument queer.   Mots-clés : Subversion/déconstruction, identités de genre, l’un/l’autre, Dandysme, queer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Les translocations chromosomiques du gène MLL sont connues pour mener au développement de leucémies aiguës. La translocation avec un de ses partenaires de fusion les plus communs, ENL, peut engendrer des leucémies aiguës de plusieurs types différents pour cette même translocation. Une fois la leucémogenèse initiée par la fusion MLL-ENL, son rôle quant au maintien du phénotype leucémique n’est pas encore bien connu à ce jour. Pour mieux comprendre l’importance de MLL-ENL après la leucémogenèse, des cellules souches/progénitrices de sang de cordon ombilical humain purifiées ont ainsi été transduites par un virus exprimant le gène de fusion MLL-ENL bordé par des sites LoxP ainsi que le marqueur eGFP. Ces cellules infectées ont ensuite été injectées dans notre modèle de souris immunodéficientes irradiées et placées sous observation pendant 24 semaines pour voir le développement de leucémies aiguës. Elles ont alors été sacrifiées et les cellules la moelle osseuse et de la rate ont ensuite été analysées par cytométrie en flux pour déterminer si la xénogreffe a engendré une leucémie dans notre modèle ainsi que le phénotype de celle-ci. Les souris injectées par les cellules infectées par le MLL-ENL ont généré uniquement des leucémies lymphoïdes aiguës de type B. Les cellules de ces leucémies primaires isolées ont été par la suite infectées par un lentivirus exprimant la cre-recombinase et le marqueur BFP afin d’exciser le gène MLL-ENL des cellules leucémiques grâce aux sites LoxP. Les cellules ont ensuite été triées pour le marqueur BFP et injectées dans des souris secondaires pour de voir si les cellules leucémiques souches pouvaient toujours régénérer la leucémie. Les conséquences de l’absence de MLL-ENL dans le maintien du phénotype leucémique n’ont cependant pas pu être vérifiées à cause d’une erreur dans la séquence de la cre-recombinase, mais nous avons observé la régénération des leucémies secondaires.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Single walled carbon nanotubes (SWNTs) were incorporated in polymer nanocomposites based on poly(3-octylthiophene) (P3OT), thermoplastic polyurethane (TPU) or a blend of them. Thermogravimetry demonstrated the success of the purification procedure employed in the chemical treatment of SWNTs prior to composite preparation. Stable dispersions of SWNTs in chloroform were obtained by non-covalent interactions with the dissolved polymers. Composites exhibited glass transitions, melting temperatures and heat of fusion which changed in relation to pure polymers. This behavior is discussed as associated to interactions between nanotubes and polymers. The conductivity at room temperature of the blend (TPU-P3OT) with SWNT is higher than the P3OT/SWNT composite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hybrid face recognition, using image (2D) and structural (3D) information, has explored the fusion of Nearest Neighbour classifiers. This paper examines the effectiveness of feature modelling for each individual modality, 2D and 3D. Furthermore, it is demonstrated that the fusion of feature modelling techniques for the 2D and 3D modalities yields performance improvements over the individual classifiers. By fusing the feature modelling classifiers for each modality with equal weights the average Equal Error Rate improves from 12.60% for the 2D classifier and 12.10% for the 3D classifier to 7.38% for the Hybrid 2D+3D clasiffier.