885 resultados para Fractional Derivative


Relevância:

20.00% 20.00%

Publicador:

Resumo:

MSC 2010: 44A20, 33C60, 44A10, 26A33, 33C20, 85A99

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MSC 2010: 26A33, 05C72, 33E12, 34A08, 34K37, 35R11, 60G22

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MSC 2010: 26A33, 44A45, 44A40, 65J10

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MSC 2010: 26A33, 05C72, 33E12, 34A08, 34K37, 35R11, 60G22

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MSC 2010: 26A33 Dedicated to Professor Rudolf Gorenflo on the occasion of his 80th anniversary

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MSC 2010: 26A33, 33E12, 34K29, 34L15, 35K57, 35R30

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MSC 2010: 26A33, 35R11, 35R60, 35Q84, 60H10 Dedicated to 80-th anniversary of Professor Rudolf Gorenflo

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MSC 2010: 26A33, 46Fxx, 58C05 Dedicated to 80-th birthday of Prof. Rudolf Gorenflo

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MSC 2010: 15A15, 15A52, 33C60, 33E12, 44A20, 62E15 Dedicated to Professor R. Gorenflo on the occasion of his 80th birthday

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exercises involving the calculation of the derivative of piecewise defined functions are common in calculus, with the aim of consolidating beginners’ knowledge of applying the definition of the derivative. In such exercises, the piecewise function is commonly made up of two smooth pieces joined together at one point. A strategy which avoids using the definition of the derivative is to find the derivative function of each smooth piece and check whether these functions agree at the chosen point. Showing that this strategy works together with investigating discontinuities of the derivative is usually beyond a calculus course. However, we shall show that elementary arguments can be used to clarify the calculation and behaviour of the derivative for piecewise functions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Виржиния С. Кирякова - В този обзор илюстрираме накратко наши приноси към обобщенията на дробното смятане (анализ) като теория на операторите за интегриране и диференциране от произволен (дробен) ред, на класическите специални функции и на интегралните трансформации от лапласов тип. Показано е, че тези три области на анализа са тясно свързани и взаимно индуцират своето възникване и по-нататъшно развитие. За конкретните твърдения, доказателства и примери, вж. Литературата.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MSC 2010: 26A33, 34A08, 34K37