990 resultados para Flow Regime
Resumo:
In this work we analyze how patchy distributions of CO2 and brine within sand reservoirs may lead to significant attenuation and velocity dispersion effects, which in turn may have a profound impact on surface seismic data. The ultimate goal of this paper is to contribute to the understanding of these processes within the framework of the seismic monitoring of CO2 sequestration, a key strategy to mitigate global warming. We first carry out a Monte Carlo analysis to study the statistical behavior of attenuation and velocity dispersion of compressional waves traveling through rocks with properties similar to those at the Utsira Sand, Sleipner field, containing quasi-fractal patchy distributions of CO2 and brine. These results show that the mean patch size and CO2 saturation play key roles in the observed wave-induced fluid flow effects. The latter can be remarkably important when CO2 concentrations are low and mean patch sizes are relatively large. To analyze these effects on the corresponding surface seismic data, we perform numerical simulations of wave propagation considering reservoir models and CO2 accumulation patterns similar to the CO2 injection site in the Sleipner field. These numerical experiments suggest that wave-induced fluid flow effects may produce changes in the reservoir's seismic response, modifying significantly the main seismic attributes usually employed in the characterization of these environments. Consequently, the determination of the nature of the fluid distributions as well as the proper modeling of the seismic data constitute important aspects that should not be ignored in the seismic monitoring of CO2 sequestration problems.
Resumo:
PURPOSE: The aim of the study was to determine whether glucose uptake in viable myocardium of ischemic cardiomyopathy patients depends on rest myocardial blood flow (MBF) and the residual myocardial flow reserve (MFR). METHODS: Thirty-six patients with ischemic cardiomyopathy (left ventricular ejection fraction 25 ± 10 %) were studied with N-ammonia and F-fluorodeoxyglucose (FDG) positron emission tomography (PET). Twenty age-matched normals served as controls. Regional MBF was determined at rest and during dipyridamole hyperemia and regional FDG extraction was estimated from regional FDG to N-ammonia activity ratios. RESULTS: Rest MBF was reduced in viable (0.42 ± 0.18 ml/min per g) and nonviable regions (0.32 ± 0.09 ml/min per g) relative to remote regions (0.68 ± 0.23 ml/min per g, p < 0.001) and to normals (0.63 ± 0.13 ml/min per g). Dipyridamole raised MBFs in controls, remote, viable, and nonviable regions. MBFs at rest (p < 0.05) and stress (p < 0.05) in viable regions were significantly higher than that in nonviable regions, while MFRs did not differ significantly (p > 0.05). Compared to MFR in remote myocardium, MFRs in viable regions were similar (1.39 ± 0.56 vs 1.70 ± 0.45, p > 0.05) but were significantly lower in nonviable regions (1.23 ± 0.43, p < 0.001). Moreover, the FDG and thus glucose extraction was higher in viable than in remote (1.40 ± 0.14 vs 0.90 ± 0.20, p < 0.001) and in nonviable regions (1.13 ± 0.21, p < 0.001). The extraction of FDG in viable regions was independent of rest MBF but correlated inversely with MFRs (r =-0.424, p < 0.05). No correlation between the FDG extraction and MFR was observed in nonviable regions. CONCLUSION: As in the animal model, decreasing MFRs in viable myocardium are associated with increasing glucose extraction that likely reflects a metabolic adaptation of remodeling hibernating myocytes.
Resumo:
Large phasic variations of respiratory mechanical impedance (Zrs) have been observed during induced expiratory flow limitation (EFL) (M. Vassiliou, R. Peslin, C. Saunier, and C. Duvivier. Eur. Respir. J. 9: 779-786, 1996). To clarify the meaning of Zrs during EFL, we have measured from 5 to 30 Hz the input impedance (Zin) of mechanical analogues of the respiratory system, including flow-limiting elements (FLE) made of easily collapsible rubber tubing. The pressures upstream (Pus) and downstream (Pds) from the FLE were controlled and systematically varied. Maximal flow (Vmax) increased linearly with Pus, was close to the value predicted from wave-speed theory, and was obtained for Pus-Pds of 4-6 hPa. The real part of Zin started increasing abruptly with flow (V) >85%Vmax and either further increased or suddenly decreased in the vicinity of V¿max. The imaginary part of Zin decreased markedly and suddenly above 95%Vmax. Similar variations of Zin during EFL were seen with an analogue that mimicked the changes of airway transmural pressure during breathing. After pressure andV measurements upstream and downstream from the FLE were combined, the latter was analyzed in terms of a serial (Zs) and a shunt (Zp) compartment. Zs was consistent with a large resistance and inertance, and Zp with a mainly elastic element having an elastance close to that of the tube walls. We conclude that Zrs data during EFL mainly reflect the properties of the FLE.
Resumo:
Success of species assignment using DNA barcodes has been shown to vary among plant lineages because of a wide range of different factors. In this study, we confirm the theoretical prediction that gene flow influences species assignment with simulations and a literature survey. We show that the genome experiencing the highest gene flow is, in the majority of the cases, the best suited for species delimitation. Our results clearly suggest that, for most angiosperm groups, plastid markers will not be the most appropriate for use as DNA barcodes. We therefore advocate shifting the focus from plastid to nuclear markers to achieve an overall higher success using DNA barcodes.
Resumo:
[cat] El 20 de febrer de 2006 es va aprovar el Reglament núm. 318/2006 del Consell que reforma l'Organització Comuna de Mercats del sucre. L'article analitza els canvis introduïts en el nou règim europeu del sucre i valora la seva adequació a les normes i demandes internacionals de liberalització del comerç agrícola. Es conclou que la reforma ha estat el mínim necessari per fer front als reptes internacionals: la recent resolució de l'Òrgan de Solució de Diferències de l'Organització Mundial del Comerç i les demandes de liberalització plantejades en el marc de la Ronda de Doha.
Resumo:
A formação dos solos dos tabuleiros está relacionada a sedimentos arenoargilosos e argilosos do grupo Barreiras do Terciário, que são, em geral, arenosos, pobres em nutrientes e em matéria orgânica, tipicamente cauliníticos e caracterizados por camadas adensadas (camadas coesas) localizadas, quase sempre, entre 20 e 60 cm de profundidade. Por apresentarem elevados níveis de adensamento e se situarem próximas à superfície do solo, as camadas coesas promovem alterações expressivas no movimento de água no solo, com repercussão negativa no desenvolvimento e na produtividade das plantas. Esse trabalho teve como objetivo comparar volumes de água de irrigação quanto ao movimento e distribuição de água em Argissolo Amarelo coeso dos Tabuleiros Costeiros e seu reflexo em variáveis de produção de coqueiro-anão-verde. Foram testados três volumes de água de irrigação: 50, 100 e 150 L d-1 em esquema experimental inteiramente casualizado, com seis repetições, sendo a planta considerada uma parcela. Na comparação do número de cachos e de frutos por planta e volume de água de coco por fruto, utilizou-se o mesmo esquema experimental inteiramente casualizado, porém com quatro repetições e nove plantas úteis por parcela. O monitoramento da umidade do solo foi feito com sondas TDR a partir de leituras semanais de sensores localizados a 0,15, 0,30, 0,60, 0,90 e 1,2 m de profundidade. Com base nos resultados obtidos, concluiu-se que 100 e 150 L d-1 de água promoveram redução na expressão do adensamento na camada coesa, fato não observado no tratamento 50 L d-1. A produção média de frutos por planta e o volume de água de coco por fruto foram maiores no tratamento 150 L d-1. Os tratamentos testados, no entanto, mostraram-se insuficientes para promover a inflexão da curva de resposta das variáveis de produção, que apresentaram valores crescentes em função dos volumes de água de irrigação testados.
Resumo:
[cat] El 20 de febrer de 2006 es va aprovar el Reglament núm. 318/2006 del Consell que reforma l'Organització Comuna de Mercats del sucre. L'article analitza els canvis introduïts en el nou règim europeu del sucre i valora la seva adequació a les normes i demandes internacionals de liberalització del comerç agrícola. Es conclou que la reforma ha estat el mínim necessari per fer front als reptes internacionals: la recent resolució de l'Òrgan de Solució de Diferències de l'Organització Mundial del Comerç i les demandes de liberalització plantejades en el marc de la Ronda de Doha.
Resumo:
Nutrients are basically transported to the roots by mass flow and diffusion. The aim of this study was to quantify the contribution of these two mechanisms to the acquisition of macronutrients (N, P, K, Ca, Mg, and S) and cationic micronutrients (Fe, Mn, Zn, and Cu) by maize plants as well as xylem exudate volume and composition in response to soil aggregate size and water availability. The experiment was conducted in a greenhouse with samples of an Oxisol, from under two management systems: a region of natural savanna-like vegetation (Cerradão, CER) and continuous maize under conventional management for over 30 years (CCM). The treatments were arranged in a factorial [2 x (1 + 2) x 2] design, with two management systems (CER and CCM), (1 + 2) soil sifted through a 4 mm sieve and two aggregate classes (< 0.5 mm and 0.5 - 4.0 mm) and two soil matric potentials (-40 and -10 kPa). These were evaluated in a randomized block design with four replications. The experiment was conducted for 70 days after sowing. The influence of soil aggregate size and water potential on the nutrient transport mechanisms was highest in soil samples with higher nutrient concentrations in solution, in the CER system; diffusion became more relevant when water availability was higher and in aggregates < 0.5 mm. The volume of xylem exudate collected from maize plants increased with the decrease in aggregate size and the increased availability of soil water in the CER system. The highest Ca and Mg concentrations in the xylem exudate of plants grown on samples from the CER system were related to the high concentrations of these nutrients in the soil solution of this management system.
Resumo:
A novel laboratory technique is proposed to investigate wave-induced fluid flow on the mesoscopic scale as a mechanism for seismic attenuation in partially saturated rocks. This technique combines measurements of seismic attenuation in the frequency range from 1 to 100?Hz with measurements of transient fluid pressure as a response of a step stress applied on top of the sample. We used a Berea sandstone sample partially saturated with water. The laboratory results suggest that wave-induced fluid flow on the mesoscopic scale is dominant in partially saturated samples. A 3-D numerical model representing the sample was used to verify the experimental results. Biot's equations of consolidation were solved with the finite-element method. Wave-induced fluid flow on the mesoscopic scale was the only attenuation mechanism accounted for in the numerical solution. The numerically calculated transient fluid pressure reproduced the laboratory data. Moreover, the numerically calculated attenuation, superposed to the frequency-independent matrix anelasticity, reproduced the attenuation measured in the laboratory in the partially saturated sample. This experimental?numerical fit demonstrates that wave-induced fluid flow on the mesoscopic scale and matrix anelasticity are the dominant mechanisms for seismic attenuation in partially saturated Berea sandstone.
Resumo:
The removal of the litter layer in Portuguese pine forests would reduce fire hazard, but on the other hand this practice would influence the thermal regime of the soil, hence affecting soil biological activity, litter decomposition and nutrient dynamics. Temperature profiles of a sandy soil (Haplic Podzol) under a pine forest were measured with thermocouples at depths to 16 cm, with and without litter layer. The litter layer acted as a thermal insulator, reducing the amplitude of the periodic temperature variation in the mineral soil underneath and increasing damping depths, particularly at low soil water contents. At the mineral soil surface the reduction of amplitudes was about 2.5 ºC in the annual cycle and 5 to 6.7 ºC in the daily cycle, depending on the soil water content. When soil was both cold and wet, mean daily soil temperatures were higher (about 1 - 1.5 ºC) under the litter layer. Improved soil thermal conditions under the litter layer recommend its retention as a forest management practice to follow in general.
Resumo:
AIMS: We studied the respective added value of the quantitative myocardial blood flow (MBF) and the myocardial flow reserve (MFR) as assessed with (82)Rb positron emission tomography (PET)/CT in predicting major adverse cardiovascular events (MACEs) in patients with suspected myocardial ischaemia. METHODS AND RESULTS: Myocardial perfusion images were analysed semi-quantitatively (SDS, summed difference score) and quantitatively (MBF, MFR) in 351 patients. Follow-up was completed in 335 patients and annualized MACE (cardiac death, myocardial infarction, revascularization, or hospitalization for congestive heart failure or de novo stable angor) rates were analysed with the Kaplan-Meier method in 318 patients after excluding 17 patients with early revascularizations (<60 days). Independent predictors of MACEs were identified by multivariate analysis. During a median follow-up of 624 days (inter-quartile range 540-697), 35 MACEs occurred. An annualized MACE rate was higher in patients with ischaemia (SDS >2) (n = 105) than those without [14% (95% CI = 9.1-22%) vs. 4.5% (2.7-7.4%), P < 0.0001]. The lowest MFR tertile group (MFR <1.8) had the highest MACE rate [16% (11-25%) vs. 2.9% (1.2-7.0%) and 4.3% (2.1-9.0%), P < 0.0001]. Similarly, the lowest stress MBF tertile group (MBF <1.8 mL/min/g) had the highest MACE rate [14% (9.2-22%) vs. 7.3% (4.2-13%) and 1.8% (0.6-5.5%), P = 0.0005]. Quantitation with stress MBF or MFR had a significant independent prognostic power in addition to semi-quantitative findings. The largest added value was conferred by combining stress MBF to SDS. This holds true even for patients without ischaemia. CONCLUSION: Perfusion findings in (82)Rb PET/CT are strong MACE outcome predictors. MBF quantification has an added value allowing further risk stratification in patients with normal and abnormal perfusion images.
Resumo:
BACKGROUND: An elevated early (E) to late (A) diastolic filling velocities ratio, typically seen in advanced diastolic dysfunction, has also been observed after cardioversion of atrial fibrillation as a consequence of the depressed left atrial (LA) contractility. We hypothesized that the impaired LA contractile function demonstrated after orthotopic cardiac transplantation (OCT) could also lead to this "pseudorestrictive" pattern. METHOD: E/A ratio related to the tissue Doppler early mitral annular velocity (Ea) as preload-independent index of LV relaxation was evaluated in all consecutive OCT patients between 2005 and 2007. RESULTS: The study population comprised 48 patients 97 ± 77 months after OCT. Thirty-two patients (67%) had an E/A ratio > 2. LV systolic function and myocardial relaxation assessed by the Ea velocity were similar compared to patients with normal ratio (61 ± 6% vs. 60 ± 12%, P = 0.854 and 15 ± 4 cm/s vs. 14 ± 3 cm/s, r = 0.15, P = 0.323, respectively). On the other hand, the proportion of the recipient and donor LA cuffs as estimated by the recipient/global LA area ratio and the LA emptying fraction significantly correlated with the E/A ratio (r = 0.40, P = 0.005 and r =-0.33, P = 0.022, respectively). CONCLUSION: Our study shows that there is a high prevalence of elevated E/A ratio after standard OCT which seems mainly related to reduced LA contractility. Recognition of this "pseudorestrictive" pattern may avoid misdiagnosis of diastolic dysfunction.