879 resultados para Fama-French 3-factor model
Resumo:
The erythroleukaemic cell line TF-1, infected with either the pBabe neo retrovirus or the retrovirus bearing the human erythropoietin (hEpo) gene, developed three growth factor-independent clones. Erythropoietin (Epo), interleukin-3 (IL-3) and granulocyte-macrophage colony stimulating factor (GM-CSF) accelerated the proliferation of these clones. Autonomous growth of the clones was independent of Epo because it was not altered by Epo anti-sense oligonucleotides, nor was Epo detectable in culture supernatants. Cells from the mutant clones could not be induced by Epo to express glycophorin A and haemoglobin synthesis was markedly reduced. Haemin reversed the block in Epo-induced haemoglobin synthesis. Acquisition of growth factor-independence appears to be linked with the selective loss of differentiation capacity. These cells may provide a useful model for the study of the mechanisms involved in leukaemic transformation.
Resumo:
This study was conducted to determine the perivascular cell responses to increased endothelial cell expression of insulin-like growth factor binding protein-3 (IGFBP-3) in mouse retina. The contribution of bone marrow cells in the IGFBP-3-mediated response was examined using green fluorescent protein-positive (GFP(+)) adult chimeric mice subjected to laser-induced retinal vessel occlusion injury. Intravitreal injection of an endothelial-specific IGFBP-3-expressing plasmid resulted in increased differentiation of GF(P)+ hematopoietic stem cells (HSCs) into pericytes and astrocytes as determined by immunohistochemical analysis. Administration of IGFBP-3 plasmid to mouse pups that underwent the oxygen-induced retinopathy model resulted in increased pericyte ensheathment and reduced pericyte apoptosis in the developing retina. Increased IGFBP-3 expression reduced the number of activated microglial cells and decreased apoptosis of neuronal cells in the oxygen-induced retinopathy model. In summary, IGFBP-3 increased differentiation of GFP(+) HSCs into pericytes and astrocytes while increasing vascular ensheathment of pericytes and decreasing apoptosis of pericytes and retinal neurons. All of these cytoprotective effects exhibited by IGFBP-3 overexpression can result in a more stable retinal vascular bed. Thus, endothelial expression of IGFBP-3 may represent a physiologic response to injury and may represent a therapeutic strategy for the treatment of ischemic vascular eye diseases, such as diabetic retinopathy and retinopathy of prematurity. (Am J Pathol 2011, 178:1517-1524; DOI: 10.1016/j.ajpath.2010.12.031)
Resumo:
Chronic respiratory infections by Burkholderia cenocepacia in cystic fibrosis patients are associated with increased morbidity and mortality, but virulence factors determining the persistence of the infection in the airways are not well characterized. Using a chronic pulmonary infection model, we previously identified an attenuated mutant with an insertion in a gene encoding an RpoN activator protein, suggesting that RpoN and/or components of the RpoN regulon play a role in B. cenocepacia virulence. In this study, we demonstrate that a functional rpoN gene is required for bacterial motility and biofilm formation in B. cenocepacia K56-2. Unlike other bacteria, RpoN does not control flagellar biosynthesis, as evidenced by the presence of flagella in the rpoN mutant. We also demonstrate that, in macrophages, the rpoN mutant is rapidly trafficked to lysosomes while intracellular wild-type B. cenocepacia localizes in bacterium-containing vacuoles that exhibit a pronounced delay in phagolysosomal fusion. Rapid trafficking to the lysosomes is also associated with the release of red fluorescent protein into the vacuolar lumen, indicating loss of bacterial cell envelope integrity. Although a role for RpoN in motility and biofilm formation has been previously established, this study is the first demonstration that the RpoN regulon in B. cenocepacia is involved in delaying phagolysosomal fusion, thereby prolonging bacterial intracellular survival within macrophages.
Resumo:
We have previously shown that phospholipase A2 (PLA2) activity is rapidly activated by epidermal growth factor (EGF) and phorbol 12-myristate 13-acetate (PMA) in renal mesangial cells and other cell systems in a manner that suggests a covalent modification of the PLA2 enzyme(s). This PLA2 activity is cytosolic (cPLA2) and is distinct from secretory forms of PLA2, which are also stimulated in mesangial cells in response to cytokines and other agonists. However, longer-term regulation of cPLA2 in renal cells may also occur at the level of gene expression. Cultured rat mesangial cells were used as a model system to test the effects of EGF and PMA on the regulation of cPLA2 gene expression. EGF and PMA both produced sustained increases in cPLA2 mRNA levels, with a parallel increase in enzyme activity over time. Inhibition of protein synthesis by cycloheximide increased basal cPLA2 mRNA accumulation in serum-starved mesangial cells, and the combination of EGF and cycloheximide resulted in super-induction of cPLA2 gene expression compared with EGF alone. Actinomycin D treatment entirely abrogated the effect of EGF on cPLA2 mRNA accumulation. These findings suggest that regulation of cPLA2 is achieved by factors controlling gene transcription and possibly mRNA stability, in addition to previously characterized posttranslational modifications.
Resumo:
This paper presents an analytical model for the prediction of the elastic behaviour of plain-weave fabric composites. The fabric is a hybrid plain-weave with different materials and undulations in the warp and weft directions. The derivation of the effective material properties is based on classical laminate theory (CLT).
The theoretical predictions have been compared with experimental results and predictions using alternative models available in the literature. Composite laminates were manufactured using the resin infusion under flexible tooling (RIFT) process and tested under tension and in-plane shear loading to validate the model. A good correlation between theoretical and experimental results for the prediction of in-plane properties was obtained. The limitations of the existing theoretical models based on classical laminate theory (CLT) for predicting the out-of-plane mechanical properties are presented and discussed.
Resumo:
PURPOSE:: To evaluate the occurrence of retinal pigment epithelial atrophy in patients with age-related macular degeneration undergoing anti-vascular endothelial growth factor therapy. METHODS:: The study is a retrospective review. Eligible were patients with age-related macular degeneration and choroidal neovascular membranes treated with anti-vascular endothelial growth factor between October 2007 and February 2011; they were followed for >3 months, with fundus photographs and fluorescein angiography at baseline and with autofluorescence and near-infrared autofluorescence images at baseline and follow-up. Demographics, visual acuity, the type of choroidal neovascular membranes, the number of treatments performed, and the length of follow-up were recorded. Autofluorescence and near-infrared autofluorescence images were evaluated for the presence or absence of areas of reduced signal. A multilevel logistic regression model was used to investigate the factors that may be associated with progression of atrophy at follow-up, which was the primary outcome of this study. RESULTS:: Sixty-three patients (72 eyes) were followed for a median of 16 months (range, 3-36 months). Atrophy at baseline was observed in 47% (34/72) of eyes; progression of atrophy occurred in 62% (45/72) of eyes at the last visit. The number of anti-vascular endothelial growth factor injections received was statistically significantly associated with the progression of atrophy at follow-up (odds ratio, 1.35; 95% confidence interval, 1.05-1.73; P = 0.02). CONCLUSION:: Atrophy was frequently observed in patients with age-related macular degeneration and choroidal neovascular membranes undergoing anti-vascular endothelial growth factor therapy.
Resumo:
PURPOSE. This study evaluated the effect of transforming growth factor (TGF)-ß2 and anti-TGF-ß2 antibody in a rodent model of posterior capsule opacification (PCO). METHODS. An extracapsular lens extraction (ECLE) was performed in 72 Sprague-Dawley rats. At the end of the procedure, 10 µL TGF-ß2 (TGF-ß2-treated group), fetal calf serum (FCS)/phosphate- buffered saline (PBS; FCS/PBS-treated control group), a human monoclonal TGF-ß2 antibody (anti-TGF-ß2-treated group), or a null control IgG4 antibody (null antibody-treated control group) was injected into the capsule. Animals were killed 3 and 14 days postoperatively. Eyes were evaluated clinically prior to euthanatization, then enucleated and processed for light microscopy and immunohistochemistry afterward. PCO was evaluated clinically and histopathologically. Student's t-test and ? were used to assess differences between groups. RESULTS. There were no statistically significant clinical or histopathological differences in degree of PCO between the TGF-ß2- and FCS/PBS-treated groups at 3 and 14 days after ECLE. Nor were there differences between the anti-TGF-ß2- and the null antibody-treated groups, with the exception of the histopathology score for capsule wrinkling 3 days after ECLE (P = 0.02). a-Smooth-muscle actin staining was observed in the lens capsular bag only in areas where there was close contact with the iris. CONCLUSIONS. No sustained effect of TGF-ß2 or anti-TGF-ß2 antibody on PCO was found in rodents at the dose and timing administered in this study. Iris cells may play a role in the process of epithelial mesenchymal transition linked to PCO. Copyright © Association for Research in Vision and Ophthalmology.
Resumo:
Insulin-like growth factor binding protein (IGFBP)-3 modulates vascular development by regulating endothelial progenitor cell (EPC) behavior, specifically stimulating EPC cell migration. This study was undertaken to investigate the mechanism of IGFBP-3 effects on EPC function and how IGFBP-3 mediates cytoprotection following vascular injury.
Resumo:
Oxidized and/or glycated low-density lipoprotein (LDL) may mediate capillary injury in diabetic retinopathy. The mechanisms may involve pro-inflammatory and pro-oxidant effects on retinal capillary pericytes. In this study, these effects, and the protective effects of pigment epithelium-derived factor (PEDF), were defined in a primary human pericyte model. Human retinal pericytes were exposed to 100 microg/ml native LDL (N-LDL) or heavily oxidized glycated LDL (HOG-LDL) with or without PEDF at 10-160 nM for 24 h. To assess pro-inflammatory effects, monocyte chemoattractant protein-1 (MCP-1) secretion was measured by ELISA, and nuclear factor-kappaB (NF-kappaB) activation was detected by immunocytochemistry. Oxidative stress was determined by measuring intracellular reactive oxygen species (ROS), peroxynitrite (ONOO(-)) formation, inducible nitric oxide synthase (iNOS) expression, and nitric oxide (NO) production. The results showed that MCP-1 was significantly increased by HOG-LDL, and the effect was attenuated by PEDF in a dose-dependent manner. PEDF also attenuated the HOG-LDL-induced NF-kappaB activation, suggesting that the inhibitory effect of PEDF on MCP-1 was at least partially through the blockade of NF-kappaB activation. Further studies demonstrated that HOG-LDL, but not N-LDL, significantly increased ONOO(-) formation, NO production, and iNOS expression. These changes were also alleviated by PEDF. Moreover, PEDF significantly ameliorated HOG-LDL-induced ROS generation through up-regulation of superoxide dismutase 1 expression. Taken together, these results demonstrate pro-inflammatory and pro-oxidant effects of HOG-LDL on retinal pericytes, which were effectively ameliorated by PEDF. Suppressing MCP-1 production and thus inhibiting macrophage recruitment may represent a new mechanism for the salutary effect of PEDF in diabetic retinopathy and warrants more studies in future.