981 resultados para Exponential e logarithmic quaternion functions
Resumo:
Empirical orthogonal function (EOF) analysis is a powerful tool for data compression and dimensionality reduction used broadly in meteorology and oceanography. Often in the literature, EOF modes are interpreted individually, independent of other modes. In fact, it can be shown that no such attribution can generally be made. This review demonstrates that in general individual EOF modes (i) will not correspond to individual dynamical modes, (ii) will not correspond to individual kinematic degrees of freedom, (iii) will not be statistically independent of other EOF modes, and (iv) will be strongly influenced by the nonlocal requirement that modes maximize variance over the entire domain. The goal of this review is not to argue against the use of EOF analysis in meteorology and oceanography; rather, it is to demonstrate the care that must be taken in the interpretation of individual modes in order to distinguish the medium from the message.
Resumo:
We study generalised prime systems P (1 < p(1) <= p(2) <= ..., with p(j) is an element of R tending to infinity) and the associated Beurling zeta function zeta p(s) = Pi(infinity)(j=1)(1 - p(j)(-s))(-1). Under appropriate assumptions, we establish various analytic properties of zeta p(s), including its analytic continuation, and we characterise the existence of a suitable generalised functional equation. In particular, we examine the relationship between a counterpart of the Prime Number Theorem (with error term) and the properties of the analytic continuation of zeta p(s). Further we study 'well-behaved' g-prime systems, namely, systems for which both the prime and integer counting function are asymptotically well-behaved. Finally, we show that there exists a natural correspondence between generalised prime systems and suitable orders on N-2. Some of the above results are relevant to the second author's theory of 'fractal membranes', whose spectral partition functions are given by Beurling-type zeta functions, as well as to joint work of that author and R. Nest on zeta functions attached to quasicrystals.
Resumo:
The use of special units for logarithmic ratio quantities is reviewed. The neper is used with a natural logarithm (logarithm to the base e) to express the logarithm of the amplitude ratio of two pure sinusoidal signals, particularly in the context of linear systems where it is desired to represent the gain or loss in amplitude of a single-frequency signal between the input and output. The bel, and its more commonly used submultiple, the decibel, are used with a decadic logarithm (logarithm to the base 10) to measure the ratio of two power-like quantities, such as a mean square signal or a mean square sound pressure in acoustics. Thus two distinctly different quantities are involved. In this review we define the quantities first, without reference to the units, as is standard practice in any system of quantities and units. We show that two different definitions of the quantity power level, or logarithmic power ratio, are possible. We show that this leads to two different interpretations for the meaning and numerical values of the units bel and decibel. We review the question of which of these alternative definitions is actually used, or is used by implication, by workers in the field. Finally, we discuss the relative advantages of the alternative definitions.
Resumo:
We study the effect of varying the boundary condition on: the spectral function of a finite one-dimensional Hubbard chain, which we compute using direct (Lanczos) diagonalization of the Hamiltonian. By direct comparison with the two-body response functions and with the exact solution of the Bethe ansatz equations, we can identify both spinon and holon features in the spectra. At half-filling the spectra have the well-known structure of a low-energy holon band and its shadow-which spans the whole Brillouin zone-and a spinon band present for momenta less than the Fermi momentum. Features related to the twisted boundary condition are cusps in the spinon band. We show that the spectral building principle, adapted to account for both the finite system size and the twisted boundary condition, describes the spectra well in terms of single spinon and holon excitations. We argue that these finite-size effects are a signature of spin-charge separation and that their study should help establish the existence and nature of spin-charge separation in finite-size systems.
Resumo:
Comment on the article by Philip Molyneux on "The Dimensions of Logarithmic Quantities" [J. Chem. Educ. 1991, 68, 467-4691].