Stieltjes functions and discrete classical orthogonal polynomials
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
03/12/2014
03/12/2014
01/10/2013
|
Resumo |
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Classical orthogonal polynomials can be characterized in terms of the corresponding Stieltjes function. We consider the construction of a Stieltjes function in terms of the falling factorials for discrete classical orthogonal polynomials (Charlier, Krawtchouk, Meixner, and Hahn). This Stieltjes function associated with classical orthogonal polynomials of a discrete variable is solution of a non-homogeneous difference equation. That property characterizes the discrete classical measures. In addition, an hypergeometric expression for the Stieltjes function is obtained in all the discrete classical cases. |
Formato |
537-547 |
Identificador |
http://dx.doi.org/10.1007/s40314-013-0035-5 Computational & Applied Mathematics. Heidelberg: Springer Heidelberg, v. 32, n. 3, p. 537-547, 2013. 1807-0302 http://hdl.handle.net/11449/112921 10.1007/s40314-013-0035-5 WOS:000326103500013 |
Idioma(s) |
eng |
Publicador |
Springer |
Relação |
Computational & Applied Mathematics |
Direitos |
closedAccess |
Palavras-Chave | #Difference equations #Stieltjes functions #Classical orthogonal polynomials of a discrete variable |
Tipo |
info:eu-repo/semantics/article |