Stieltjes functions and discrete classical orthogonal polynomials


Autoria(s): Bracciali, Cleonice Fátima; Perez, Teresa E.; Pinar, Miguel A.
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

03/12/2014

03/12/2014

01/10/2013

Resumo

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Classical orthogonal polynomials can be characterized in terms of the corresponding Stieltjes function. We consider the construction of a Stieltjes function in terms of the falling factorials for discrete classical orthogonal polynomials (Charlier, Krawtchouk, Meixner, and Hahn). This Stieltjes function associated with classical orthogonal polynomials of a discrete variable is solution of a non-homogeneous difference equation. That property characterizes the discrete classical measures. In addition, an hypergeometric expression for the Stieltjes function is obtained in all the discrete classical cases.

Formato

537-547

Identificador

http://dx.doi.org/10.1007/s40314-013-0035-5

Computational & Applied Mathematics. Heidelberg: Springer Heidelberg, v. 32, n. 3, p. 537-547, 2013.

1807-0302

http://hdl.handle.net/11449/112921

10.1007/s40314-013-0035-5

WOS:000326103500013

Idioma(s)

eng

Publicador

Springer

Relação

Computational & Applied Mathematics

Direitos

closedAccess

Palavras-Chave #Difference equations #Stieltjes functions #Classical orthogonal polynomials of a discrete variable
Tipo

info:eu-repo/semantics/article