903 resultados para Explicit Finite Element Macro Modelling Method
Resumo:
Tese de Doutoramento em Engenharia Civil
Resumo:
Sandwich geometries, mainly in the form of panels and beams, are commonly applied in various transportation industries, such as aerospace, aeronautic and automotive. Sandwich geometries represent important advantages in structural applications, namely high specific stiffness, low weight, and possibility of design optimization prior to manufacturing. The aim of this paper is to uncover the influence of the number of reinforcements (ribs), and of the thickness on the mechanical behavior of all-metal sandwich panels subjected to uncoupled bending and torsion loadings. In this study, four geometries are compared. The orientation of the reinforcements and the effect of transversal ribs are also considered in this study. It is shown that the all the relations are non-linear, despite the elastic nature of the analysis in the Finite Element software ANSYS MECHANICAL APDL.
Resumo:
Several types of internally reinforced thin-walled beams are subjected to a feasibility evaluation of its mechanical behavior for industrial applications. The adapting of already existing efficient sandwich geometries to hollow-box beams of larger dimensions may reveal promising results. Novel types of sandwich beams under bending and torsion uncoupled loadings are studied in terms of stiffness behavior in static analysis. For the analysis of the solutions, the models are built using the Finite Element Method (FEM) software ANSYS Mechanical APDL. The feasibility of the novel beams was determined by the comparison of the stiffness behavior of the novel hollow-box beams with conventional hollow-box beams. An efficiency parameter was defined in order to determine the feasibility. It is found that the novel geometries represent an excellent improvement under bending loadings, better than under torsion loadings. Nevertheless, for bending and torsion combined loadings, if bending loads are predominant, the beams can still be interesting for some applications, in particular those with mobile parts.
Resumo:
Tese de Doutoramento em Engenharia Civil (área de especialização em Engenharia de Estruturas).
Resumo:
This thesis is a continuation of the Enterprise-Ireland Research Innovation Fund (RIF) Project entitled’ "Design and Manufacturing of Customised Maxillo-Facial Prostheses" The primary objective of this Internal Research Development Program (IRDP) project was to investigate two fundamental design changes 1 To incorporate the over-denture abutments directly into the implant. 2 To remove the restraining wings by the addition of screws, which affix the. implant to the dense material of the jawbone. The prosthetic was redesigned using the ANSYS Finite Element Analysis software program and analysed to* • Reduce the internal von Mises stress distribution The new prosthetic had a -63.63 % lower von Mises stress distribution when compared with the original prosthetic. • Examine the screw preload effects. A maximum relative displacement of 22 6 * lO^mm between the bone and screw was determined, which is well below the critical threshold of micromotion which prevents osseointegration • Investigate the prosthetic-bone contact interface. Three models of the screw, prosthesis, and bone, were studied. (Axisymmetnc, quarter volume, and full volume), a recommended preload torque of 0 32 Nm was applied to the prosthetic and a maximum von Mises stress of 1.988 MPa was predicted • Study the overdenture removal forces. This analysis could not be completed because the correct plastic multilinear properties of the denture material could not be established The redesigned prosthetic was successfully manufactured on a 3-axis milling machine with an indexing system The prosthetic was examined for dimensional quality and strength The research established the feasibility of the new design and associated manufacturing method.
Resumo:
Elliptic differential equations, finite element method, mortar element method, streamline diffusion FEM, upwind method, numerical method, error estimate, interpolation operator, grid generation, adaptive refinement
Resumo:
Dendritic Growth, Stefan-Problem, Finite-Element-Method, Level-Set-Method
Resumo:
Polycrystal viscoplasticity, Aluminum, Taylor model, Two-scale approach, Codf, Mises-Fisher distributions, Tensorial Fourier coefficients, Finite element method, Deep drawing, Earing, Yield stresses, R values
Resumo:
Estudi elaborat a partir d’una estada a l’ Imperial College London, entre juliol i novembre de 2006. En aquest treball s’ha investigat la geometria més apropiada per a la caracterització de la tenacitat a fractura intralaminar de materials compòsits laminats amb teixit. L’objectiu és assegurar la propagació de l’esquerda sense que la proveta falli abans per cap altre mecanisme de dany per tal de permetre la caracterització experimental de la tenacitat a fractura intralaminar de materials compòsits laminats amb teixit. Amb aquesta fi, s’ha dut a terme l’anàlisi paramètrica de diferents tipus de provetes mitjançant el mètode dels elements finits (FE) combinat amb la virtual crack closure technique (VCCT). Les geometries de les provetes analitzades corresponen a la proveta de l’assaig compact tension (CT) i diferents variacions com la extended compact tension (ECT), la proveta widened compact tension (WCT), tapered compact tension (TCT) i doubly-tapered compact tension (2TCT). Com a resultat d’aquestes anàlisis s’han derivat diferents conclusions per obtenir la geometria de proveta més apropiada per a la caracterització de la tenacitat a fractura intralaminar de materials compòsits laminats amb teixit. A més, també s’han dut a terme una sèrie d’assaigs experimentals per tal de validar els resultats de les anàlisis paramètriques. La concordança trobada entre els resultats numèrics i experimentals és bona tot i la presència d’efectes no previstos durant els assaigs experimentals.
Resumo:
Informe de investigación elaborado a partir de una estancia en el Laboratorio de Diseño Computacional en Aeroespacial en el Massachusetts Institute of Technology (MIT), Estados Unidos, entre noviembre de 2006 y agosto de 2007. La aerodinámica es una rama de la dinámica de fluidos referida al estudio de los movimientos de los líquidos o gases, cuya meta principal es predecir las fuerzas aerodinámicas en un avión o cualquier tipo de vehículo, incluyendo los automóviles. Las ecuaciones de Navier-Stokes representan un estado dinámico del equilibrio de las fuerzas que actúan en cualquier región dada del fluido. Son uno de los sistemas de ecuaciones más útiles porque describen la física de una gran cantidad de fenómenos como corrientes del océano, flujos alrededor de una superficie de sustentación, etc. En el contexto de una tesis doctoral, se está estudiando un flujo viscoso e incompresible, solucionando las ecuaciones de Navier- Stokes incompresibles de una manera eficiente. Durante la estancia en el MIT, se ha utilizado un método de Galerkin discontinuo para solucionar las ecuaciones de Navier-Stokes incompresibles usando, o bien un parámetro de penalti para asegurar la continuidad de los flujos entre elementos, o bien un método de Galerkin discontinuo compacto. Ambos métodos han dado buenos resultados y varios ejemplos numéricos se han simulado para validar el buen comportamiento de los métodos desarrollados. También se han estudiado elementos particulares, los elementos de Raviart y Thomas, que se podrían utilizar en una formulación mixta para obtener un algoritmo eficiente para solucionar problemas numéricos complejos.
Resumo:
Bone defects in revision knee arthroplasty are often located in load-bearing regions. The goal of this study was to determine whether a physiologic load could be used as an in situ osteogenic signal to the scaffolds filling the bone defects. In order to answer this question, we proposed a novel translation procedure having four steps: (1) determining the mechanical stimulus using finite element method, (2) designing an animal study to measure bone formation spatially and temporally using micro-CT imaging in the scaffold subjected to the estimated mechanical stimulus, (3) identifying bone formation parameters for the loaded and non-loaded cases appearing in a recently developed mathematical model for bone formation in the scaffold and (4) estimating the stiffness and the bone formation in the bone-scaffold construct. With this procedure, we estimated that after 3 years mechanical stimulation increases the bone volume fraction and the stiffness of scaffold by 1.5- and 2.7-fold, respectively, compared to a non-loaded situation.
Resumo:
Report for the scientific sojourn carried out at the Université Catholique de Louvain, Belgium, from March until June 2007. In the first part, the impact of important geometrical parameters such as source and drain thickness, fin spacing, spacer width, etc. on the parasitic fringing capacitance component of multiple-gate field-effect transistors (MuGFET) is deeply analyzed using finite element simulations. Several architectures such as single gate, FinFETs (double gate), triple-gate represented by Pi-gate MOSFETs are simulated and compared in terms of channel and fringing capacitances for the same occupied die area. Simulations highlight the great impact of diminishing the spacing between fins for MuGFETs and the trade-off between the reduction of parasitic source and drain resistances and the increase of fringing capacitances when Selective Epitaxial Growth (SEG) technology is introduced. The impact of these technological solutions on the transistor cut-off frequencies is also discussed. The second part deals with the study of the effect of the volume inversion (VI) on the capacitances of undoped Double-Gate (DG) MOSFETs. For that purpose, we present simulation results for the capacitances of undoped DG MOSFETs using an explicit and analytical compact model. It monstrates that the transition from volume inversion regime to dual gate behaviour is well simulated. The model shows an accurate dependence on the silicon layer thickness,consistent withtwo dimensional numerical simulations, for both thin and thick silicon films. Whereas the current drive and transconductance are enhanced in volume inversion regime, our results show thatintrinsic capacitances present higher values as well, which may limit the high speed (delay time) behaviour of DG MOSFETs under volume inversion regime.
Resumo:
A study of the main types of coatings and its processes that modern industry commonly apply to prevent to the corrosion due to the environmental effects to energetic market pipelines have been done. Extracting main time and temperature range values, coating heat treatment recreation have been applied to x65 pipelines steel grade samples obtained from a pipe which was formed using UOE forming process. Experimental tensile tests and Charpy V‐Notch Impact test have been carried out for a deeply knowledge of the influence on the steel once this recreations are applied. The Yield Strength and toughness have been improved despite lower values in rupture strain and ductile‐brittle temperature transition have been obtained. Finite Element Method have been applied to simulate the entirely pipe cold bending process to predict the mechanical properties and behaviour of the pipe made from x65 steel grade under different conditions.
Stabilized Petrov-Galerkin methods for the convection-diffusion-reaction and the Helmholtz equations
Resumo:
We present two new stabilized high-resolution numerical methods for the convection–diffusion–reaction (CDR) and the Helmholtz equations respectively. The work embarks upon a priori analysis of some consistency recovery procedures for some stabilization methods belonging to the Petrov–Galerkin framework. It was found that the use of some standard practices (e.g. M-Matrices theory) for the design of essentially non-oscillatory numerical methods is not feasible when consistency recovery methods are employed. Hence, with respect to convective stabilization, such recovery methods are not preferred. Next, we present the design of a high-resolution Petrov–Galerkin (HRPG) method for the 1D CDR problem. The problem is studied from a fresh point of view, including practical implications on the formulation of the maximum principle, M-Matrices theory, monotonicity and total variation diminishing (TVD) finite volume schemes. The current method is next in line to earlier methods that may be viewed as an upwinding plus a discontinuity-capturing operator. Finally, some remarks are made on the extension of the HRPG method to multidimensions. Next, we present a new numerical scheme for the Helmholtz equation resulting in quasi-exact solutions. The focus is on the approximation of the solution to the Helmholtz equation in the interior of the domain using compact stencils. Piecewise linear/bilinear polynomial interpolation are considered on a structured mesh/grid. The only a priori requirement is to provide a mesh/grid resolution of at least eight elements per wavelength. No stabilization parameters are involved in the definition of the scheme. The scheme consists of taking the average of the equation stencils obtained by the standard Galerkin finite element method and the classical finite difference method. Dispersion analysis in 1D and 2D illustrate the quasi-exact properties of this scheme. Finally, some remarks are made on the extension of the scheme to unstructured meshes by designing a method within the Petrov–Galerkin framework.
Resumo:
We introduce and analyze two new semi-discrete numerical methods for the multi-dimensional Vlasov-Poisson system. The schemes are constructed by combing a discontinuous Galerkin approximation to the Vlasov equation together with a mixed finite element method for the Poisson problem. We show optimal error estimates in the case of smooth compactly supported initial data. We propose a scheme that preserves the total energy of the system.