983 resultados para Experimental results
Resumo:
Usingof belt for high precision applications has become appropriate because of the rapid development in motor and drive technology as well as the implementation of timing belts in servo systems. Belt drive systems provide highspeed and acceleration, accurate and repeatable motion with high efficiency, long stroke lengths and low cost. Modeling of a linear belt-drive system and designing its position control are examined in this work. Friction phenomena and position dependent elasticity of the belt are analyzed. Computer simulated results show that the developed model is adequate. The PID control for accurate tracking control and accurate position control is designed and applied to the real test setup. Both the simulation and the experimental results demonstrate that the designed controller meets the specified performance specifications.
Resumo:
En aquest projecte fem un estudi de diferents mètodes per a la segmentació i extracció de línies de mapes de metro com a suport per a daltònics. Hem aplicat dos mètodes amb intervenció de l’usuari i cinc mètodes automàtics on fem servir K-means per a la segmentació de color i Hough per a l’extracció de línies. Dels mètodes amb intervenció obtenim millors resultats amb un mètode d’assignació aproximada del color, i entre els autoàatics tenim com a millor una solució ad-hoc sense paràmetres aplicada sobre l’espai RGB. D’acord amb els resultats experimentals, aquests mètodes ens permeten fer una bona segmentació i extracció de les línies de metro.
Resumo:
Personal results are presented to illustrate the development of immunoscintigraphy for the detection of cancer over the last 12 years, from the early experimental results in nude mice grafted with human colon carcinoma to the most modern form of immunoscintigraphy applied to patients, using I123 labeled Fab fragments from monoclonal anti-CEA antibodies detected by single photon emission computerized tomography (SPECT). The first generation of immunoscintigraphy used I131 labeled, immunoadsorbent purified, polyclonal anti-CEA antibodies and planar scintigraphy, as the detection system. The second generation used I131 labeled monoclonal anti-CEA antibodies and SPECT, while the third generation employed I123 labeled fragments of monoclonal antibodies and SPECT. The improvement in the precision of tumor images with the most recent forms of immunoscintigraphy is obvious. However, we think the usefulness of immunoscintigraphy for routine cancer management has not yet been entirely demonstrated. Further prospective trials are still necessary to determine the precise clinical role of immunoscintigraphy. A case report is presented on a patient with two liver metastases from a sigmoid carcinoma, who received through the hepatic artery a therapeutic dose (100 mCi) of I131 coupled to 40 mg of a mixture of two high affinity anti-CEA monoclonal antibodies. Excellent localisation in the metastases of the I131 labeled antibodies was demonstrated by SPECT and the treatment was well tolerated. The irradiation dose to the tumor, however, was too low at 4300 rads (with 1075 rads to the normal liver and 88 rads to the bone marrow), and no evidence of tumor regression was obtained. Different approaches for increasing the irradiation dose delivered to the tumor by the antibodies are considered.
Resumo:
Proteins can switch between different conformations in response to stimuli, such as pH or temperature variations, or to the binding of ligands. Such plasticity and its kinetics can have a crucial functional role, and their characterization has taken center stage in protein research. As an example, Topoisomerases are particularly interesting enzymes capable of managing tangled and supercoiled double-stranded DNA, thus facilitating many physiological processes. In this work, we describe the use of a cantilever-based nanomotion sensor to characterize the dynamics of human topoisomerase II (Topo II) enzymes and their response to different kinds of ligands, such as ATP, which enhance the conformational dynamics. The sensitivity and time resolution of this sensor allow determining quantitatively the correlation between the ATP concentration and the rate of Topo II conformational changes. Furthermore, we show how to rationalize the experimental results in a comprehensive model that takes into account both the physics of the cantilever and the dynamics of the ATPase cycle of the enzyme, shedding light on the kinetics of the process. Finally, we study the effect of aclarubicin, an anticancer drug, demonstrating that it affects directly the Topo II molecule inhibiting its conformational changes. These results pave the way to a new way of studying the intrinsic dynamics of proteins and of protein complexes allowing new applications ranging from fundamental proteomics to drug discovery and development and possibly to clinical practice.
Resumo:
Woven monofilament, multifilament, and spun yarn filter media have long been the standard media in liquid filtration equipment. While the energy for a solid-liquid separation process is determined by the engineering work, it is the interface between the slurry and the equipment - the filter media - that greatly affects the performance characteristics of the unit operation. Those skilled in the art are well aware that a poorly designed filter medium may endanger the whole operation, whereas well-performing filter media can make the operation smooth and economical. As the mineral and pulp producers seek to produce ever finer and more refined fractions of their products, it is becoming increasingly important to be able to dewater slurries with average particle sizes around 1 ¿m using conventional, high-capacity filtration equipment. Furthermore, the surface properties of the media must not allow sticky and adhesive particles to adhere to the media. The aim of this thesis was to test how the dirt-repellency, electrical resistance and highpressure filtration performance of selected woven filter media can be improved by modifying the fabric or yarn with coating, chemical treatment and calendering. The results achieved by chemical surface treatments clearly show that the woven media surface properties can be modified to achieve lower electrical resistance and improved dirt-repellency. The main challenge with the chemical treatments is the abrasion resistance and, while the experimental results indicate that the treatment is sufficiently permanent to resist standard weathering conditions, they may still prove to be inadequately strong in terms of actual use.From the pressure filtration studies in this work, it seems obvious that the conventional woven multifilament fabrics still perform surprisingly well against the coated media in terms of filtrate clarity and cake build-up. Especially in cases where the feed slurry concentration was low and the pressures moderate, the conventional media seemed to outperform the coated media. In the cases where thefeed slurry concentration was high, the tightly woven media performed well against the monofilament reference fabrics, but seemed to do worse than some of the coated media. This result is somewhat surprising in that the high initial specific resistance of the coated media would suggest that the media will blind more easily than the plain woven media. The results indicate, however, that it is actually the woven media that gradually clogs during the coarse of filtration. In conclusion, it seems obvious that there is a pressure limit above which the woven media looses its capacity to keep the solid particles from penetrating the structure. This finding suggests that for extreme pressures the only foreseeable solution is the coated fabrics supported by a strong enough woven fabric to hold thestructure together. Having said that, the high pressure filtration process seems to follow somewhat different laws than the more conventional processes. Based on the results, it may well be that the role of the cloth is most of all to support the cake, and the main performance-determining factor is a long life time. Measuring the pore size distribution with a commercially available porometer gives a fairly accurate picture of the pore size distribution of a fabric, but failsto give insight into which of the pore sizes is the most important in determining the flow through the fabric. Historically air, and sometimes water, permeability measures have been the standard in evaluating media filtration performance including particle retention. Permeability, however, is a function of a multitudeof variables and does not directly allow the estimation of the effective pore size. In this study a new method for estimating the effective pore size and open pore area in a densely woven multifilament fabric was developed. The method combines a simplified equation of the electrical resistance of fabric with the Hagen-Poiseuille flow equation to estimate the effective pore size of a fabric and the total open area of pores. The results are validated by comparison to the measured values of the largest pore size (Bubble point) and the average pore size. The results show good correlation with measured values. However, the measured and estimated values tend to diverge in high weft density fabrics. This phenomenon is thought to be a result of a more tortuous flow path of denser fabrics, and could most probably be cured by using another value for the tortuosity factor.
Resumo:
The main objective of this thesis was togenerate better filtration technologies for effective production of pure starchproducts, and thereby the optimisation of filtration sequences using created models, as well as the synthesis of the theories of different filtration stages, which were suitable for starches. At first, the structure and the characteristics of the different starch grades are introduced and each starch grade is shown to have special characteristics. These are taken as the basis of the understanding of the differences in the behaviour of the different native starch grades and their modifications in pressure filtration. Next, the pressure filtration process is divided into stages, which are filtration, cake washing, compression dewatering and displacement dewatering. Each stage is considered individually in their own chapters. The order of the different suitable combinations of the process stages are studied, as well as the proper durations and pressures of the stages. The principles of the theory of each stageare reviewed, the methods for monitoring the progress of each stage are presented, and finally, the modelling of them is introduced. The experimental results obtained from the different stages of starch filtration tests are given and the suitability of the theories and models to the starch filtration are shown. Finally, the theories and the models are gathered together and shown, that the analysis of the whole starch pressure filtration process can be performed with the software developed.
Resumo:
The parameter setting of a differential evolution algorithm must meet several requirements: efficiency, effectiveness, and reliability. Problems vary. The solution of a particular problem can be represented in different ways. An algorithm most efficient in dealing with a particular representation may be less efficient in dealing with other representations. The development of differential evolution-based methods contributes substantially to research on evolutionary computing and global optimization in general. The objective of this study is to investigatethe differential evolution algorithm, the intelligent adjustment of its controlparameters, and its application. In the thesis, the differential evolution algorithm is first examined using different parameter settings and test functions. Fuzzy control is then employed to make control parameters adaptive based on an optimization process and expert knowledge. The developed algorithms are applied to training radial basis function networks for function approximation with possible variables including centers, widths, and weights of basis functions and both having control parameters kept fixed and adjusted by fuzzy controller. After the influence of control variables on the performance of the differential evolution algorithm was explored, an adaptive version of the differential evolution algorithm was developed and the differential evolution-based radial basis function network training approaches were proposed. Experimental results showed that the performance of the differential evolution algorithm is sensitive to parameter setting, and the best setting was found to be problem dependent. The fuzzy adaptive differential evolution algorithm releases the user load of parameter setting and performs better than those using all fixedparameters. Differential evolution-based approaches are effective for training Gaussian radial basis function networks.
Resumo:
The present study was done with two different servo-systems. In the first system, a servo-hydraulic system was identified and then controlled by a fuzzy gainscheduling controller. The second servo-system, an electro-magnetic linear motor in suppressing the mechanical vibration and position tracking of a reference model are studied by using a neural network and an adaptive backstepping controller respectively. Followings are some descriptions of research methods. Electro Hydraulic Servo Systems (EHSS) are commonly used in industry. These kinds of systems are nonlinearin nature and their dynamic equations have several unknown parameters.System identification is a prerequisite to analysis of a dynamic system. One of the most promising novel evolutionary algorithms is the Differential Evolution (DE) for solving global optimization problems. In the study, the DE algorithm is proposed for handling nonlinear constraint functionswith boundary limits of variables to find the best parameters of a servo-hydraulic system with flexible load. The DE guarantees fast speed convergence and accurate solutions regardless the initial conditions of parameters. The control of hydraulic servo-systems has been the focus ofintense research over the past decades. These kinds of systems are nonlinear in nature and generally difficult to control. Since changing system parameters using the same gains will cause overshoot or even loss of system stability. The highly non-linear behaviour of these devices makes them ideal subjects for applying different types of sophisticated controllers. The study is concerned with a second order model reference to positioning control of a flexible load servo-hydraulic system using fuzzy gainscheduling. In the present research, to compensate the lack of dampingin a hydraulic system, an acceleration feedback was used. To compare the results, a pcontroller with feed-forward acceleration and different gains in extension and retraction is used. The design procedure for the controller and experimental results are discussed. The results suggest that using the fuzzy gain-scheduling controller decrease the error of position reference tracking. The second part of research was done on a PermanentMagnet Linear Synchronous Motor (PMLSM). In this study, a recurrent neural network compensator for suppressing mechanical vibration in PMLSM with a flexible load is studied. The linear motor is controlled by a conventional PI velocity controller, and the vibration of the flexible mechanism is suppressed by using a hybrid recurrent neural network. The differential evolution strategy and Kalman filter method are used to avoid the local minimum problem, and estimate the states of system respectively. The proposed control method is firstly designed by using non-linear simulation model built in Matlab Simulink and then implemented in practical test rig. The proposed method works satisfactorily and suppresses the vibration successfully. In the last part of research, a nonlinear load control method is developed and implemented for a PMLSM with a flexible load. The purpose of the controller is to track a flexible load to the desired position reference as fast as possible and without awkward oscillation. The control method is based on an adaptive backstepping algorithm whose stability is ensured by the Lyapunov stability theorem. The states of the system needed in the controller are estimated by using the Kalman filter. The proposed controller is implemented and tested in a linear motor test drive and responses are presented.
Resumo:
This work was carried out in the laboratory of Fluid Dynamics, at Lappeenranta University of Technology during the years 1991-1996. The research was a part of larger high speed technology development research. First, there was the idea of making high speed machinery applications with the Brayton cycle. There was a clear need to deepen theknowledge of the cycle itself and to make a new approach in the field of the research. Also, the removal of water from the humid air seemed very interesting. The goal of this work was to study methods of designing high speed machinery to the reversed Brayton cycle, from theoretical principles to practical applications. The reversed Brayton cycle can be employed as an air dryer, a heat pump or a refrigerating machine. In this research the use of humid air as a working fluid has an environmental advantage, as well. A new calculation method for the Braytoncycle is developed. In this method especially the expansion process in the turbine is important because of the condensation of the water vapour in the humid air. This physical phenomena can have significant effects on the level of performance of the application. Also, the influence of calculating the process with actual, achievable process equipment efficiencies is essential for the development of the future machinery. The above theoretical calculations are confirmed with two different laboratory prototypes. The high speed machinery concept allows one to build an application with only one rotating shaft including all the major parts: the high speed motor, the compressor and the turbine wheel. The use of oil free bearings and high rotational speed outlines give several advantages compared to conventional machineries: light weight, compact structure, safe operation andhigher efficiency at a large operational region. There are always problems whentheory is applied to practice. The calibrations of pressure, temperature and humidity probes were made with care but still measurable errors were not negligible. Several different separators were examined and in all cases the content of the separated water was not exact. Due to the compact sizes and structures of the prototypes, the process measurement was slightly difficult. The experimental results agree well with the theoretical calculations. These experiments prove the operation of the process and lay a ground for the further development. The results of this work give very promising possibilities for the design of new, commercially competitive applications that use high speed machinery and the reversed Brayton cycle.
Resumo:
Combustion of wood is increasing because of the needs of decreasing the emissions of carbon dioxide and the amount of waste going to landfills. Wood based fuels are often scattered on a large area. The transport distances should be short enough to prevent too high costs, and so the size of heating and power plants using wood fuels is often rather small. Combustion technologies of small-size units have to be developed to reach efficient and environmentally friendly energy production. Furnaces that use different packed bed combustion or gasification techniques areoften most economic in small-scale energy production. Ignition front propagation rate affects the stability, heat release rate and emissions of packed bed combustion. Ignition front propagation against airflow in packed beds of wood fuels has been studied. The research has been carried out mainly experimentally. Theoretical aspects have been considered to draw conclusions about the experimental results. The effects of airflow rate, moisture content of the fuel, size, shape and density of particles, and porosity of the bed on the propagation rate of the ignition front have been studied. The experiments were carried out in a pot furnace. The fuels used in the experiments were mainly real wood fuels that are often burned in the production of energy. The fuel types were thin wood chips, saw dust, shavings, wood chips, and pellets with different sizes. Also a few mixturesof the above were tested. Increase in the moisture content of the fuel decreases the propagation rates of the ignition front and makes the range of possible airflow rates narrower because of the energy needed for the evaporation of water and the dilution of volatile gases due to evaporated steam. Increase in the airflow rate increases the ignition rate until a maximum rate of propagation is reached after which it decreases. The maximum flame propagation rate is not always reached in stoichiometric combustion conditions. Increase in particle size and density transfers the optimum airflow rate towards fuel lean conditions. Mixing of small and large particles is often advantageous, because small particles make itpossible to reach the maximum ignition rate in fuel rich conditions, and large particles widen the range of possible airflow rates. A correlation was found forthe maximum rate of ignition front propagation in different wood fuels. According to the correlation, the maximum ignition mass flux is increased when the sphericity of the particles and the porosity of the bed are increased and the moisture content of the fuel is decreased. Another fit was found between sphericity and porosity. Increase in sphericity decreases the porosity of the bed. The reasons of the observed results are discussed.
Resumo:
Background: Current advances in genomics, proteomics and other areas of molecular biology make the identification and reconstruction of novel pathways an emerging area of great interest. One such class of pathways is involved in the biogenesis of Iron-Sulfur Clusters (ISC). Results: Our goal is the development of a new approach based on the use and combination of mathematical, theoretical and computational methods to identify the topology of a target network. In this approach, mathematical models play a central role for the evaluation of the alternative network structures that arise from literature data-mining, phylogenetic profiling, structural methods, and human curation. As a test case, we reconstruct the topology of the reaction and regulatory network for the mitochondrial ISC biogenesis pathway in S. cerevisiae. Predictions regarding how proteins act in ISC biogenesis are validated by comparison with published experimental results. For example, the predicted role of Arh1 and Yah1 and some of the interactions we predict for Grx5 both matches experimental evidence. A putative role for frataxin in directly regulating mitochondrial iron import is discarded from our analysis, which agrees with also published experimental results. Additionally, we propose a number of experiments for testing other predictions and further improve the identification of the network structure. Conclusion: We propose and apply an iterative in silico procedure for predictive reconstruction of the network topology of metabolic pathways. The procedure combines structural bioinformatics tools and mathematical modeling techniques that allow the reconstruction of biochemical networks. Using the Iron Sulfur cluster biogenesis in S. cerevisiae as a test case we indicate how this procedure can be used to analyze and validate the network model against experimental results. Critical evaluation of the obtained results through this procedure allows devising new wet lab experiments to confirm its predictions or provide alternative explanations for further improving the models.
Resumo:
This paper is devoted to the study of the volcanoes of l-isogenies of elliptic curves over a finite field, focusing on their height as well as on the location of curves across its different levels. The core of the paper lies on the relationship between the l-Sylow subgroup of an elliptic curve and the level of the volcano where it is placed. The particular case l = 3 is studied in detail, giving an algorithm to determine the volcano of 3-isogenies of a given elliptic curve. Experimental results are also provided.
Resumo:
The goal of this work is to try to create a statistical model, based only on easily computable parameters from the CSP problem to predict runtime behaviour of the solving algorithms, and let us choose the best algorithm to solve the problem. Although it seems that the obvious choice should be MAC, experimental results obtained so far show, that with big numbers of variables, other algorithms perfom much better, specially for hard problems in the transition phase.
Resumo:
The electrical properties of heavily In‐doped polycrystalline CdS films have been studied as a function of the doping level. The films were prepared by vacuum coevaporation of CdS and In. Conductivity and Hall measurements were performed over the temperature range 77-400 K. The conductivity decreases weakly with the temperature and shows a tendency towards saturation at low temperatures. A simple relationship σ=σ0(1+βT2) is found in the low‐temperature range. The temperature dependence of the mobility is similar to that of the conductivity since the Hall coefficient is found to be a constant in the whole temperature range. We interpret the experimental results in terms of a modified version of grain‐boundary trapping Seto"s model, taking into account thermionic emission and tunneling of carriers through the potential barriers. The barriers are found to be high and narrow, and tunneling becomes the predominating transport mechanism.
Resumo:
Hydrogenated amorphous silicon (a‐Si:H) thin films have been obtained from pure SiH4 rf discharges by using the square wave modulation (SQWM) method. Film properties have been studied by means of spectroellipsometry, thermal desorption spectrometry, photothermal deflection spectroscopy and electrical conductivity measurements, as a function of the modulation frequency of the rf power amplitude (0.2-4000 Hz). The films deposited at frequencies about 1 kHz show the best structural and optoelectronic characteristics. Based upon the experimental results, a qualitative model is presented, which points up the importance of plasma negative ions in the deposition of a‐Si:H from SQWM rf discharges through their influence on powder particle formation.