956 resultados para Equipment Failure


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the following question: does market failure justify redistribution? We argue that the general answer to this question is no, in the sense that policies for correcting market failures do not aim at producing a "desirable" income distribution. This follows from the fact that, by construction, market failure is a deviation from "efficiency" that does not involve any notion of a desirable distribution of welfare (or income). However, there are special cases where a "corrective measure" involving redistribution can offset a market failure, so this can provide a form of efficiency- based justification for redistribution.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L’encéphalopathie hépatique (EH) se développe chez les patients atteints d’une maladie du foie et se caractérise par de nombreuses anomalies neuropsychiatriques. L’insuffisance hépatique aiguë (IHA) se caractérise par une perte progressive de l’état de conscience, par une augmentation rapide de l’œdème cérébral et une augmentation de la pression intracrânienne entraînant une herniation cérébrale et la mort. Plusieurs facteurs sont responsables du développement de l’EH mais depuis une centaine d’années, l’hyperammonémie qui peut atteindre des concentrations de l’ordre de plusieurs millimolaires chez les patients atteints d’IHA aux stades de coma est considérée comme un facteur crucial dans la pathogenèse de l’EH. La présente thèse comprend 4 articles suggérant l’implication de nouveaux mécanismes pathogéniques dans le développement de l’EH et de l’œdème cérébral associés à l’IHA et tente d’expliquer l’effet thérapeutique de l’hypothermie et de la minocycline dans la prévention de l’EH et de l’œdème cérébral: 1. L’IHA induite par dévascularisation hépatique chez le rat se caractérise par une augmentation de la production de cytokines pro-inflammatoires cérébrales (IL-6, IL-1, TNF-). Cette observation constitue la première évidence directe que des mécanismes neuro-inflammatoires jouent une rôle dans la pathogenèse de l’EH et de l’œdème cérébral associés à l’IHA (Chapitre 2.1, articles 1 et 2). 2. L’activation de la microglie telle que mesurée par l’expression de marqueurs spécifiques (OX42, OX-6) coïncide avec le développement de l’encéphalopathie (stade coma) et de l’œdème cérébral et s’accompagne d’une production accrue de cytokines pro-inflammatoires cérébrales (Chapitre 2.1, article 1 et 2). 3. Un stress oxydatif/nitrosatif causé par une augmentation de l’expression de l’oxyde nitrique synthétase et une augmentation de la synthèse d’oxyde nitrique cérébral participe à la pathogénèse des complications neurologiques de l’IHA (Chapitre 2.3, articles 3 et 4). 4. Des traitements anti-inflammatoires tels que l’hypothermie et la minocycline peuvent constituer de nouvelles approches thérapeutiques chez les patients atteints d’IHA (Chapitre 2.1, article 1; Chapitre 2.2, article 2). 5. Les effets bénéfiques de l’hypothermie et de la minocycline sur les complications neurologiques de l’IHA expérimentale s’expliquent, en partie, par une diminution du stress oxydatif/nitrosatif (Chapitre 2.3, article 3; Chapitre 2.4, article 4).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The principal cause of mortality in patients with acute liver failure (ALF) is brain herniation resulting from intracranial hypertension caused by a progressive increase of brain water. In the present study, ex vivo high-resolution 1H-NMR spectroscopy was used to investigate the effects of ALF, with or without superimposed hypothermia, on brain organic osmolyte concentrations in relation to the severity of encephalopathy and brain edema in rats with ALF due to hepatic devascularization. In normothermic ALF rats, glutamine concentrations in frontal cortex increased more than fourfold at precoma stages, i.e. prior to the onset of severe encephalopathy, but showed no further increase at coma stages. In parallel with glutamine accumulation, the brain organic osmolytes myo-inositol and taurine were significantly decreased in frontal cortex to 63\% and 67\% of control values, respectively, at precoma stages (p<0.01), and to 58\% and 67\%, respectively, at coma stages of encephalopathy (p<0.01). Hypothermia, which prevented brain edema and encephalopathy in ALF rats, significantly attenuated the depletion of myo-inositol and taurine. Brain glutamine concentrations, on the other hand, did not respond to hypothermia. These findings demonstrate that experimental ALF results in selective changes in brain organic osmolytes as a function of the degree of encephalopathy which are associated with brain edema, and provides a further rationale for the continued use of hypothermia in the management of this condition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Acute liver failure (ALF) is haemodynamically characterized by a hyperdynamic circulation. The aims of this study were to investigate the systemic and regional haemodynamics in ALF, to measure changes in nitric oxide metabolites (NOx) and to evaluate whether these haemodynamic disturbances could be attenuated with albumin dialysis. MATERIAL AND METHODS: Norwegian Landrace pigs (23-30 kg) were randomly allocated to groups as controls (sham-operation, n = 8), ALF (hepatic devascularization, n = 8) and ALF + albumin dialysis (n = 8). Albumin dialysis was started 2 h after ALF induction and continued for 4 h. Systemic and regional haemodynamics were monitored. Creatinine clearance, nitrite/nitrate and catecholamines were measured. A repeated measures ANOVA was used to analyse the data. RESULTS: In the ALF group, the cardiac index increased (PGT < 0.0001), while mean arterial pressure (PG = 0.02) and systemic vascular resistance decreased (PGT < 0.0001). Renal resistance (PG = 0.04) and hind-leg resistance (PGT = 0.003) decreased in ALF. There was no difference in jejunal blood flow between the groups. ALF pigs developed renal dysfunction with increased serum creatinine (PGT = 0.002) and decreased creatinine clearance (P = 0.02). Catecholamines were significantly higher in ALF, but NOx levels were not different. Albumin dialysis did not attenuate these haemodynamic or renal disturbances. CONCLUSIONS: The haemodynamic disturbances during the early phase of ALF are characterized by progressive systemic vasodilatation with no associated changes in metabolites of NO. Renal vascular resistance decreased and renal dysfunction developed independently of changes in renal blood flow. After 4 h of albumin dialysis there was no attenuation of the haemodynamic or renal disturbances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Acute liver failure (ALF) is characterized haemodynamically by a progressive hyperdynamic circulation. The pathophysiological mechanism is unknown, but impaired contractility of vascular smooth muscle may play an important role. The aim of this study was to evaluate the vascular response to stimulation with norepinephrine and angiotensin II in endothelium-denuded femoral artery rings. METHODS: Norwegian Landrace pigs weighing 27.1 +/- 0.5 kg (mean +/- sx (standard error of the mean)) were used. ALF was induced by performing a portacaval shunt followed by ligation of the hepatic arteries (n = 6). Sham-operated animals served as controls (n = 5). Cumulative isometric concentration contraction curves were obtained after in vitro stimulation of the femoral artery rings with either angiotensin II (10(-13) - 10(-5) mol/L) or norepinephrine (10(-13) - 10(-3) mol/L). RESULTS: Pigs suffering from ALF developed a hyperdynamic circulation with an increased cardiac index (P = 0.017) and decreased systemic vascular resistance index (P = 0.015). Studies of the hind leg revealed a decreased vascular resistance index and increased blood flow compared to sham-operated controls (P = 0.003 and P = 0.01, respectively). Angiotensin II caused a concentration-dependent contraction of the arterial segments, with no significant differences in vascular responses between the two groups. Maximum force generated did not differ (55 +/- 7 versus 56 +/- 7 mN, P = 0.95). Furthermore, there were no differences for norepinephrine in the cumulative concentration-response curves and the maximum contractile force was not significantly different (87 +/- 8 versus 93 +/- 16 mN, P = 0.55). CONCLUSIONS: This study documents for the first time that there are no signs of endothelium-independent peripheral vascular hyporesponsiveness to angiotensin II and norepinephrine in pigs with ALF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Encephalopathy, brain edema and intracranial hypertension are neurological complications responsible for substantial morbidity/mortality in patients with acute liver failure (ALF), where, aside from liver transplantation, there is currently a paucity of effective therapies. Mirroring its cerebro-protective effects in other clinical conditions, the induction of mild hypothermia may provide a potential therapeutic approach to the management of ALF. A solid mechanistic rationale for the use of mild hypothermia is provided by clinical and experimental studies showing its beneficial effects in relation to many of the key factors that determine the development of brain edema and intracranial hypertension in ALF, namely the delivery of ammonia to the brain, the disturbances of brain organic osmolytes and brain extracellular amino acids, cerebro-vascular haemodynamics, brain glucose metabolism, inflammation, subclinical seizure activity and alterations of gene expression. Initial uncontrolled clinical studies of mild hypothermia in patients with ALF suggest that it is an effective, feasible and safe approach. Randomized controlled clinical trials are now needed to adequately assess its efficacy, safety, clinical impact on global outcomes and to provide the guidelines for its use in ALF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Increased intracranial pressure (ICP) worsens the outcome of acute liver failure (ALF). This study investigates the underlying pathophysiological mechanisms and evaluates the therapeutic effect of albumin dialysis in ALF with use of the Molecular Adsorbents Recirculating System without hemofiltration/dialysis (modified, M-MARS). METHODS: Pigs were randomized into three groups: sham, ALF, and ALF + M-MARS. ALF was induced by hepatic devascularization (time = 0). M-MARS began at time = 2 and ended with the experiment at time = 6. ICP, arterial ammonia, brain water, cerebral blood flow (CBF), and plasma inflammatory markers were measured. RESULTS: ICP and arterial ammonia increased significantly over 6 hrs in the ALF group, in comparison with the sham group. M-MARS attenuated (did not normalize) the increased ICP in the ALF group, whereas arterial ammonia was unaltered by M-MARS. Brain water in the frontal cortex (grey matter) and in the subcortical white matter at 6 hrs was significantly higher in the ALF group than in the sham group. M-MARS prevented a rise in water content, but only in white matter. CBF and inflammatory mediators remained unchanged in all groups. CONCLUSION: The initial development of cerebral edema and increased ICP occurs independently of CBF changes in this noninflammatory model of ALF. Factor(s) other than or in addition to hyperammonemia are important, however, and may be more amenable to alteration by albumin dialysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic liver failure leads to hyperammonemia and consequently increased brain ammonia concentrations, resulting in hepatic encephalopathy. When the liver fails to regulate ammonia concentrations, the brain, devoid of a urea cycle, relies solely on the amidation of glutamate to glutamine through glutamine synthetase, to efficiently clear ammonia. Surprisingly, under hyperammonemic conditions, the brain is not capable of increasing its capacity to remove ammonia, which even decreases in some regions of the brain. This non-induction of glutamine synthetase in astrocytes could result from possible limiting substrates or cofactors for the enzyme, or an indirect effect of ammonia on glutamine synthetase expression. In addition, there is evidence that nitration of the enzyme resulting from exposure to nitric oxide could also be implicated. The present review summarizes these possible factors involved in limiting the increase in capacity of glutamine synthetase in brain, in chronic liver failure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glutamatergic dysfunction has been suggested to play an important role in the pathogenesis of hepatic encephalopathy (HE) in acute liver failure (ALF). Increased extracellular brain glutamate concentrations have consistently been described in different experimental animal models of ALF and in patients with increased intracranial pressure due to ALF. High brain ammonia levels remain the leading candidate in the pathogenesis of HE in ALF and studies have demonstrated a correlation between ammonia and increased concentrations of extracellular brain glutamate both clinically and in experimental animal models of ALE Inhibition of glutamate uptake or increased glutamate release from neurons and/or astrocytes could cause an increase in extracellular glutamate. This review analyses the effect of ammonia on glutamate release from (and uptake into) both neurons and astrocytes and how these pathophysiological mechanisms may be involved in the pathogenesis of HE in ALF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is increasing evidence that central noradrenaline (NA) transport mechanisms are implicated in the central nervous system complications of acute liver failure. In order to assess this possibility, binding sites for the high affinity NA transporter ligand [3H]-nisoxetine were measured by quantitative receptor autoradiography in the brains of rats with acute liver failure resulting from hepatic devascularization and in appropriate controls. In vivo microdialysis was used to measure extracellular brain concentrations of NA. Severe encephalopathy resulted in a significant loss of [3H]-nisoxetine sites in frontal cortex and a concomitant increase in extracellular brain concentrations of NA in rats with acute liver failure. A loss of transporter sites was also observed in thalamus of rats with acute liver failure. This loss of NA transporter sites could result from depletion of central NA stores due to a reserpine-like effect of ammonia which is known to accumulate to millimolar concentrations in brain in ischemic liver failure. Impaired NA transport and the consequent increase in synaptic concentrations and increased stimulation of neuronal and astrocytic noradrenergic receptors could be implicated in the pathogenesis of the encephalopathy and brain edema characteristic of acute liver failure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been suggested that reduced astrocytic uptake of neuronally released glutamate contributes to the pathogenesis of hepatic encephalopathy in acute liver failure. In order to further address this issue, the recently cloned and sequenced astrocytic glutamate transporter GLT-1 was studied in brain preparations from rats with ischemic liver failure induced by portacaval anastomosis followed 24 h later by hepatic artery ligation and from appropriate sham-operated controls. GLT-1 expression was studied using reverse transcriptase-polymerase chain reaction (RT-PCR). Expression of GLT-1 transcript was significantly decreased in frontal cortex at coma stages of acute liver failure. Western blotting using a polyclonal antibody to GLT-1 revealed a concomitant decrease in expression of transporter protein in the brains of rats with acute liver failure. Reduced capacity of astrocytes to reuptake neuronally released glutamate, resulting from a GLT-1 transporter deficit and the consequently compromised neuron-astrocytic trafficking of glutamate could contribute to the pathogenesis of hepatic encephalopathy and brain edema, two major complications of acute liver failure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Objective. Cerebral edema is a serious complication of acute liver failure (ALF), which may lead to intracranial hypertension and death. An accepted tenet has been that the blood-brain barrier is intact and that brain edema is primarily caused by a cytotoxic etiology due to hyperammonemia. However, the neuropathological changes in ALF have been poorly studied. Using a well characterized porcine model we aimed to investigate ultrastructural changes in the brain from pigs suffering from ALF. Materials and methods. Sixteen female Norwegian Landrace pigs weighing 27-35 kg were randomised into two groups: ALF (n = 8) and sham operated controls (n = 8). ALF was induced with an end-to-side portacaval shunt followed by ligation of the hepatic arteries. Biopsies were harvested from three different areas of the brain (frontal lobe, cerebellum, and brain stem) following eight hours of ALF and analyzed using electron microscopy. Results. Profound perivascular and interstitial edema were found in all three areas. Disruption of pericytic and astrocytic processes were seen, reflecting breakdown/lesion of the blood-brain barrier in animals suffering from ALF. Furthermore, neurons and axons were edematous and surrounded by vesicles. Severe damage to Purkinje neuron (necrosis) and damaged myelin were seen in the cerebellum and brain stem, respectively. Biopsies from sham operated animals were normal. Conclusions. Our data support the concept that vasogenic brain edema plays an important role in the development of intracranial hypertension in pigs with ALF.