952 resultados para Engineering, Biomedical|Physics, Optics


Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Time-resolved imaging is carried out to study the dynamics of the laser-induced forward transfer of an aqueous solution at different laser fluences. The transfer mechanisms are elucidated, and directly correlated with the material deposited at the analyzed irradiation conditions. It is found that there exists a fluence range in which regular and well-defined droplets are deposited. In this case, laser pulse energy absorption results in the formation of a plasma, which expansion originates a cavitation bubble in the liquid. After the further expansion and collapse of the bubble, a long and uniform jet is developed, which advances at a constant velocity until it reaches the receptor substrate. On the other hand, for lower fluences no material is deposited. In this case, although a jet can be also generated, it recoils before reaching the substrate. For higher fluences, splashing is observed on the receptor substrate due to the bursting of the cavitation bubble. Finally, a discussion of the possible mechanisms which lead to such singular dynamics is also provided.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photopolymerization is commonly used in a broad range of bioapplications, such as drug delivery, tissue engineering, and surgical implants, where liquid materials are injected and then hardened by means of illumination to create a solid polymer network. However, photopolymerization using a probe, e.g., needle guiding both the liquid and the curing illumination, has not been thoroughly investigated. We present a Monte Carlo model that takes into account the dynamic absorption and scattering parameters as well as solid-liquid boundaries of the photopolymer to yield the shape and volume of minimally invasively injected, photopolymerized hydrogels. In the first part of the article, our model is validated using a set of well-known poly(ethylene glycol) dimethacrylate hydrogels showing an excellent agreement between simulated and experimental volume-growth-rates. In the second part, in situ experimental results and simulations for photopolymerization in tissue cavities are presented. It was found that a cavity with a volume of 152  mm3 can be photopolymerized from the output of a 0.28-mm2 fiber by adding scattering lipid particles while only a volume of 38  mm3 (25%) was achieved without particles. The proposed model provides a simple and robust method to solve complex photopolymerization problems, where the dimension of the light source is much smaller than the volume of the photopolymerizable hydrogel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this review, we summarize how the new concept of digital optics applied to the field of holographic microscopy has allowed the development of a reliable and flexible digital holographic quantitative phase microscopy (DH-QPM) technique at the nanoscale particularly suitable for cell imaging. Particular emphasis is placed on the original biological information provided by the quantitative phase signal. We present the most relevant DH-QPM applications in the field of cell biology, including automated cell counts, recognition, classification, three-dimensional tracking, discrimination between physiological and pathophysiological states, and the study of cell membrane fluctuations at the nanoscale. In the last part, original results show how DH-QPM can address two important issues in the field of neurobiology, namely, multiple-site optical recording of neuronal activity and noninvasive visualization of dendritic spine dynamics resulting from a full digital holographic microscopy tomographic approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Here we investigate the formation of superficial micro- and nanostructures in poly(ethylene-2,6-naphthalate) (PEN), with a view to their use in biomedical device applications, and compare its performance with a polymer commonly used for the fabrication of these devices, poly(methyl methacrylate) (PMMA). The PEN is found to replicate both micro- and nanostructures in its surface, albeit requiring more forceful replication conditions than PMMA, producing a slight increase in surface hydrophilicity. This ability to form micro/nanostructures, allied to biocompatibility and good optical transparency, suggests that PEN could be a useful material for production of, or for incorporation into, transparent devices for biomedical applications. Such devices will be able to be autoclaved, due to the polymer's high temperature stability, and will be useful for applications where forceful experimental conditions are required, due to a superior chemical resistance over PMMA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of understanding how humans perceive the quality of a reproduced image is of interest to researchers of many fields related to vision science and engineering: optics and material physics, image processing (compression and transfer), printing and media technology, and psychology. A measure for visual quality cannot be defined without ambiguity because it is ultimately the subjective opinion of an “end-user” observing the product. The purpose of this thesis is to devise computational methods to estimate the overall visual quality of prints, i.e. a numerical value that combines all the relevant attributes of the perceived image quality. The problem is limited to consider the perceived quality of printed photographs from the viewpoint of a consumer, and moreover, the study focuses only on digital printing methods, such as inkjet and electrophotography. The main contributions of this thesis are two novel methods to estimate the overall visual quality of prints. In the first method, the quality is computed as a visible difference between the reproduced image and the original digital (reference) image, which is assumed to have an ideal quality. The second method utilises instrumental print quality measures, such as colour densities, measured from printed technical test fields, and connects the instrumental measures to the overall quality via subjective attributes, i.e. attributes that directly contribute to the perceived quality, using a Bayesian network. Both approaches were evaluated and verified with real data, and shown to predict well the subjective evaluation results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structural studies of proteins aim at elucidating the atomic details of molecular interactions in biological processes of living organisms. These studies are particularly important in understanding structure, function and evolution of proteins and in defining their roles in complex biological settings. Furthermore, structural studies can be used for the development of novel properties in biomolecules of environmental, industrial and medical importance. X-ray crystallography is an invaluable tool to obtain accurate and precise information about the structure of proteins at the atomic level. Glutathione transferases (GSTs) are amongst the most versatile enzymes in nature. They are able to catalyze a wide variety of conjugation reactions between glutathione (GSH) and non-polar components containing an electrophilic carbon, nitrogen or sulphur atom. Plant GSTs from the Tau class (a poorly characterized class) play an important role in the detoxification of xenobiotics and stress tolerance. Structural studies were performed on a Tau class fluorodifen-inducible glutathione transferase from Glycine max (GmGSTU4-4) complexed with GSH (2.7 Å) and a product analogue Nb-GSH (1.7 Å). The three-dimensional structure of the GmGSTU4-4-GSH complex revealed that GSH binds in different conformations in the two subunits of the dimer: in an ionized form in one subunit and a non-ionized form in the second subunit. Only the ionized form of the substrate may lead to the formation of a catalytically competent complex. Structural comparison between the GSH and Nb-GSH bound complexes revealed significant differences with respect to the hydrogen-bonding, electrostatic interaction pattern, the upper part of -helix H4 and the C-terminus of the enzyme. These differences indicate an intrasubunit modulation between the G-and Hsites suggesting an induced-fit mechanism of xenobiotic substrate binding. A novel binding site on the surface of the enzyme was also revealed. Bacterial type-II L-asparaginases are used in the treatment of haematopoietic diseases such as acute lymphoblastic leukaemia (ALL) and lymphomas due to their ability to catalyze the conversion of L-asparagine to L-aspartate and ammonia. Escherichia coli and Erwinia chrysanthemi asparaginases are employed for the treatment of ALL for over 30 years. However, serious side-effects affecting the liver and pancreas have been observed due to the intrinsic glutaminase activity of the administered enzymes. Structural studies on Helicobacter pylori L-asparaginase (HpA) were carried out in an effort to discover novel L-asparaginases with potential chemotherapeutic utility in ALL treatment. Detailed analysis of the active site geometry revealed structurally significant differences between HpA and other Lasparaginases that may be important for the biological activities of the enzyme and could be further exploited in protein engineering efforts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis research was a qualitative case study of a single class of Interdisciplinary Studies: Introduction to Engineering taught in a secondary school. The study endeavoured to explore students' experiences in and perceptions of the course, and to investigate the viability of engineering as an interdisciplinary theme at the secondary school level. Data were collected in the form of student questionnaires, the researcher's observations and reflections, and artefacts representative of students' work. Data analysis was performed by coding textual data and classifying text segments into common themes. The themes that emerged from the data were aligned with facets of interdisciplinary study, including making connections, project-based learning, and student engagement and affective outcomes. The findings of the study showed that students were positive about their experiences in the course, and enjoyed its project-driven nature. Content from mathematics, physics, and technological design was easily integrated under the umbrella of engineering. Students felt that the opportunity to develop problem solving and teamwork skills were two of the most important aspects of the course and could be relevant not only for engineering, but for other disciplines or their day-to-day lives after secondary school. The study concluded that engineering education in secondary school can be a worthwhile experience for a variety of students and not just those intending postsecondary study in engineering. This has implications for the inclusion of engineering in the secondary school curriculum and can inform the practice of curriculum planners at the school, school board, and provincial levels. Suggested directions for further research include classroom-based action research in the areas of technological education, engineering education in secondary school, and interdisciplinary education.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present work, structural, optical and electrical properties of indium sulfide are tuned by specific and controlled doping. Silver, tin, copper and chlorine were used as the doping elements. In2S3 thin films for the present study were prepared using a simple and low cost “Chemical Spray Pyrolysis (CSP)” technique. This technique is adaptable for large-area deposition of thin films in any required shape and facilitates easiness of doping and/or variation of atomic ratio. It involves spraying a solution, usually aqueous, containing soluble salts of the constituents of the desired compound onto a heated substrate. Doping process was optimized for different doping concentrations. On optimizing doping conditions, we tuned the structural, optical and electrical properties of indium sulfide thin films making them perform as an ideal buffer layer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An immense variety of problems in theoretical physics are of the non-linear type. Non~linear partial differential equations (NPDE) have almost become the rule rather than an exception in diverse branches of physics such as fluid mechanics, field theory, particle physics, statistical physics and optics, and the construction of exact solutions of these equations constitutes one of the most vigorous activities in theoretical physics today. The thesis entitled ‘Some Non-linear Problems in Theoretical Physics’ addresses various aspects of this problem at the classical level. For obtaining exact solutions we have used mathematical tools like the bilinear operator method, base equation technique and similarity method with emphasis on its group theoretical aspects. The thesis deals with certain methods of finding exact solutions of a number of non-linear partial differential equations of importance to theoretical physics. Some of these new solutions are of relevance from the applications point of view in diverse branches such as elementary particle physics, field theory, solid state physics and non-linear optics and give some insight into the stable or unstable behavior of dynamical Systems The thesis consists of six chapters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interfacings of various subjects generate new field ofstudy and research that help in advancing human knowledge. One of the latest of such fields is Neurotechnology, which is an effective amalgamation of neuroscience, physics, biomedical engineering and computational methods. Neurotechnology provides a platform to interact physicist; neurologist and engineers to break methodology and terminology related barriers. Advancements in Computational capability, wider scope of applications in nonlinear dynamics and chaos in complex systems enhanced study of neurodynamics. However there is a need for an effective dialogue among physicists, neurologists and engineers. Application of computer based technology in the field of medicine through signal and image processing, creation of clinical databases for helping clinicians etc are widely acknowledged. Such synergic effects between widely separated disciplines may help in enhancing the effectiveness of existing diagnostic methods. One of the recent methods in this direction is analysis of electroencephalogram with the help of methods in nonlinear dynamics. This thesis is an effort to understand the functional aspects of human brain by studying electroencephalogram. The algorithms and other related methods developed in the present work can be interfaced with a digital EEG machine to unfold the information hidden in the signal. Ultimately this can be used as a diagnostic tool.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Science is search for the laws of underlying phenomena of the nature. Engineering constructs the nature as we wish. Interestingly the huge engineering infrastructure like world wide web has grown in such a complex structure such that we need to see the fundamental science behind the structure and behaviour of these networks. This talk covers the science behind the complex networks like web, biological, social etc. The talk aim to discuss the basic theories that govern the static as well as the dynamics of such interesting networks

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the effect of the epitaxial structure and the acceptor doping profile on the efficiency droop in InGaN/GaN LEDs by the physics based simulation of experimental internal quantum efficiency (IQE) characteristics. The device geometry is an integral part of our simulation approach. We demonstrate that even for single quantum well LEDs the droop depends critically on the acceptor doping profile. The Auger recombination was found to increase stronger than with the third power of the carrier density and has been found to dominate the droop in the roll over zone of the IQE. The fitted Auger coefficients are in the range of the values predicted by atomistic simulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Amphiphilic polymers are a class of polymers that self-assemble into different types of microstructure, depending on the solvent environment and external stimuli. Self assembly structures can exist in many different forms, such as spherical micelles, rod-like micelles, bi-layers, vesicles, bi-continuous structure etc. Most biological systems are basically comprised of many of these organised structures arranged in an intelligent manner, which impart functions and life to the system. We have adopted the atom transfer radical polymerization (ATRP) technique to synthesize various types of block copolymer systems that self-assemble into different microstructure when subject to an external stimuli, such as pH or temperature. The systems that we have studied are: (1) pH responsive fullerene (C60) containing poly(methacrylic acid) (PMAA-b-C60); (2) pH and temperature responsive fullerene containing poly[2-(dimethylamino)ethyl methacrylate] (C₆₀-b-PDMAEMA); (3) other responsive water-soluble fullerene systems. By varying temperature, pH and salt concentration, different types microstructure can be produced. In the presence of inorganic salts, fractal patterns at nano- to microscopic dimension were observed for negatively charged PMAA-b-C60, while such structure was not observed for positively charged PDMAEMA-b-C60. We demonstrated that negatively charged fullerene containing polymeric systems can serve as excellent nano-templates for the controlled growth of inorganic crystals at the nano- to micrometer length scale and the possible mechanism was proposed. The physical properties and the characteristics of their self-assembly properties will be discussed, and their implications to chemical and biomedical applications will be highlighted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introducción: En el tratamiento con Luz Pulsada Intensa (LPI) para el fotoenvejecimiento de las manos no se encuentran estudios que evidencien si existe alguna diferencia estadísticamente significativa en el grado de efectividad y seguridad al utilizar gel o aceite mineral como medios de acople. Objetivo: Determinar la efectividad y seguridad terapéutica en el uso de gel vs aceite mineral. Materiales y Métodos: Estudio observacional analítico de cohorte retrospectivo que involucró 29 pacientes. Realizado en tres fases; selección y recolección de las historias clínicas, evaluación fotográfica de registros pre tratamiento y pos tratamiento con determinación del grado de mejoría global en el fotoenvejecimiento de las manos por parte de tres evaluadores cegados, y análisis estadístico de los datos obtenidos por medio de las pruebas de Mann Whitney y Wilcoxon. Resultados: Se encontró mejoría dada por disminución en un grado del fotoenvejecimiento para los dos medios de acople con la misma significancia estadística. La percepción subjetiva mostró mejoría en todos los pacientes evaluados. La seguridad es similar en los dos grupos pero se evidenció mayor severidad en los efectos secundarios con el uso de aceite, con diferencias estadísticamente significativas en los efectos moderados y severos. Conclusión: La efectividad es la misma independiente del medio de acople que se use. La seguridad a pesar de evidenciar un perfil similar es mayor con el uso de gel en cuanto a la menor severidad de los efectos presentados. Se requieren más estudios de tipo ensayos clínicos controlados que permitan determinar una mayor evidencia.