983 resultados para Dtable isotope
Resumo:
Geomagnetic excursions are recognized as intrinsic features of the Earth's magnetic field. High-resolution records of field behaviour, captured in marine sedimentary cores, present an opportunity to determine the temporal and geometric character of the field during geomagnetic excursions and provide constraints on the mechanisms producing field variability. We present here the highest resolution record yet published of the Blake geomagnetic excursion (~125 ka) measured in three cores from Ocean Drilling Program (ODP) Site 1062 on the Blake-Bahama Outer Ridge. The Blake excursion has a controversial structure and timing but these cores have a sufficiently high sedimentation rate (~10cm/ka) to allow detailed reconstruction of the field behaviour at this site during the excursion. Palaeomagnetic measurements of the cores reveal rapid transitions (<500 yr) between the contemporary stable normal polarity and a completely reversed state of long duration which spans a stratigraphic interval of 0.7 m. We determine the duration of the reversed state during the Blake excursion using oxygen isotope stratigraphy, combined with 230Th excess measurements to assess variations in the sedimentation rates through the sections of interest. This provides an age and duration for the Blake excursion with greater accuracy and with constrained uncertainty. We date the directional excursion as falling between 129 and 122 ka with a duration for the deviation of 6.5±1.3 kyr. The long duration of this interval and the fully reversed field suggest the existence of a pseudo-stable, reversed dipole field component during the excursion and challenge the idea that excursions are always of short duration.
Resumo:
The aim of this study was to evaluate the potential of constructing an oxygen and carbon isotope stratigraphy for the late Pleistocene succession from Hole 1127B drilled on the Great Australian Bight. Stable isotope analyses were performed on bulk- and fine-fraction (<38 µm) sediment samples. The oxygen isotope variations are generally smaller in magnitude than expected from global pelagic records. This is most likely due to the neriticly dominated sediment composition. Correlation of the oxygen isotope data with carbonate mineralogy and downhole logging data shows simultaneous variations and trends, which are particularly evident in the mid-Pleistocene sediments. Correlation of the oxygen isotope data with the classic SPECMAP curve is used to evaluate the stratigraphic potential of the Site 1127 sediments. This study indicates that an isotope stratigraphy based on planktonic and benthic foraminifers is needed to fully evaluate the response of cool-water carbonates deposited in a margin setting to global ice-volume fluctuations and, hence, the associated sea level variations.
Resumo:
Salinity increase in the subtropical gyre system may have pre-conditioned the North Atlantic Ocean for a rapid return to stronger overturning circulation and high-latitude warming following meltwater events during the Last Glacial period. Here we investigate the Gulf Stream - subtropical gyre system properties over Dansgaard-Oeschger (DO) cycles 14 to 12, including Heinrich ice-rafting event 5. During the Holocene and Last Glacial Maximum a positive gradient in surface dwelling planktonic foraminifera d18O (Globigerinoides ruber) can be observed between the Gulf Stream and subtropical gyre, due to decreasing temperature, increasing salinity, and a change from summer to year-round occurrence of G. ruber. We assess whether this gradient was a common feature during stadial-interstadial climate oscillations of Marine Isotope Stage 3, by comparing existing G. ruber d18O from ODP Site 1060 (subtropical gyre location) and new data from ODP Site 1056 (Gulf Stream location) between 54 and 46 ka. Our results suggest that this gradient was largely absent during the period studied. During the major warm DO interstadials 14 and 12 we infer a more zonal and wider Gulf Stream, influencing both ODP Sites 1056 and 1060. A Gulf Stream presence during these major interstadials is also suggested by the large vertical d18O gradient between shallow dwelling planktonic foraminifera species, especially G. ruber, and the deep dwelling species Globorotalia inflata at site 1056, which we associate with strong summer stratification and Gulf Stream presence. A major reduction in this vertical d18O gradient from 51 ka until the end of Heinrich event 5 at 48.5 ka suggests site 1056 was situated within the subtropical gyre in this mainly cold period, from which we infer a migration of the Gulf Stream to a position nearer to the continental shelf, indicative of a narrower Gulf Stream with possibly reduced transport.
Resumo:
A composite late Maastrichtian (65.5 to 68.5 Ma) marine osmium (Os) isotope record, based on samples from the Southern Ocean (ODP Site 690), the Tropical Pacific Ocean (DSDP Site 577), the South Atlantic (DSDP Site 525) and the paleo-Tethys Ocean demonstrates that subaerially exposed pelagic carbonates can record seawater Os isotope variations with a fidelity comparable to sediments recovered from the seafloor. New results provide robust evidence of a 20% decline in seawater 187Os/188Os over a period of about 200 kyr early in magnetochron C29r well below the Cretaceous-Paleogene Boundary (KPB), confirming previously reported low-resolution data from the South Atlantic Ocean. New results also confirm a second more rapid decline in 187Os/188Os associated with the KPB that is accompanied by a significant increase in Os concentrations. Complementary platinum (Pt) and iridium (Ir) concentration data indicate that the length scale of diagenetic remobilization of platinum group elements from the KPB is less than 1 m and does not obscure the pre-KPB decline in 187Os/188Os. Increases in bulk sediment Ir concentrations and decreases in bulk carbonate content that coincide with the Os isotope shift suggest that carbonate burial flux may have been lower during the initial decline in 187Os/188Os. We speculate that diminished carbonate burial rate may have been the result of ocean acidification caused by Deccan volcanism.
Resumo:
Strontium and O isotope compositions of green clay minerals from sediment cores of three boreholes drilled into (sites 424A and 509B) and close to a hydrothermal mound (site 424B) near the Galapagos Spreading Center (DSDP Legs 54 and 70) were determined. The green clays consist mostly of a transition from Fesmectite (nontronite) to glauconite. 87Sr/86Sr ratios were measured on clay size-fractions after gentle acid leaching and on the recovered leachates from different samples. The 87Sr/86Sr ratios of the clay residues from both the 424A and B sites are well below the modern seawater value, which points consistently to precipitation from hydrothermal fluids that contained variable amounts of seawater, even away from mound. However, most of the clay residues from mound site 509B have 87Sr/86Sr ratios significantly above the seawater value, suggesting the occurrence of a detrital component together with the new authigenic particles. The clay minerals of the hydrothermal mound are mixed with detrital components, and that of the sample taken outside but near the mound as a reference for the surrounding oceanic environment, yields a hydrothermal signature. Crystallization temperatures of the clays range from 32 to 63 °C assuming a d18O value of +2.2 per mil for the mineralizing fluids. Hydrothermal fluids generated in the underlying oceanic crust, mixed in varied proportions with ambient seawater and migrated into beds of the mound in a sequence of recurrent processes that ultimately resulted in the formation of the observed clay minerals. No significant temperature differences were detected for crystallization of the K-rich glauconite and K-depleted nontronite. The 87Sr/86Sr ratios of the Sr leached off the clay particles are near the value of modern seawater, inferring a progressive replacement of the hydrothermal fluids by seawater in the pore space of the mound sediments.
Resumo:
Fluctuations in the abundance of selected foraminiferal indicator species and diversity allowed the reconstruction of changes in deepwater oxygenation and monsoon-driven organic matter fluxes in the deep western Arabian Sea during the last 190 kyr. Times of maximum surface production coincide with periods of intensified SW monsoon as shown by the abundance of Globigerina bulloides and enhanced carbonate corrosion. Benthic ecosystem variability in the deep Arabian Sea is not exclusively driven by variations in monsoonal upwelling and related organic matter supply to the seafloor but also by changes in deepwater ventilation. Deepening of the base of the oxygen minimum zone (OMZ) below 1800 m water depth is strongly coherent on the precessional band but lags proxies of SW monsoon strength by 4 to 6 kyr. The "out-of-phase" relationship between OMZ deepening and maximum SW monsoon strength is explained by temporal changes in the advection of oxygen-rich deepwater masses of North Atlantic and Antarctic origin. This process affected the remineralization and burial efficiency of organic matter in the deep Arabian Sea, resulting in the observed phase lag between maximum monsoon strength and organic carbon preservation.
Resumo:
A stable oxygen and carbon isotope stratigraphy is established for a Late Weichselian/Holocene glaciomarine/marine seguence in Andfjorden and Malangsdjupet on the continental shelf off Troms, Northern Norway. The stratigraphy demonstrates that the global signals, Termination I B and possibly also I A (upper parts), are present and radiocarbon date to 10.3-9.7 kyr B.P. and >14-13.5 kyr B.P., respectively. A temperature increase of 5°-6°C and possibly a small salinity increase occurred during Term. I. A near-glacial environment between 13 and 14 kyr B.P. was characterized by poorly ventilated bottom waters followed by a meltwater pulse at circa 13 kyr B.P. During the beginning intrusion of Atlantic Water between 13 and 10 kyr B.P., the bottom water was characterized by somewhat fluctuating temperatures and salinities. Temperatures close to those of the present were established around 9.7 kyr B.P. and seem to have been rather stable since.
Resumo:
Ocean Drilling Program Site 1119 is ideally located to intercept discharges of sediment from the mid-latitude glaciers of the New Zealand Southern Alps. The natural gamma ray signal from the site's sediment core contains a history of the South Island mountain ice cap since 3.9 million years ago (Ma). The younger record, to 0.37 Ma, resembles the climatic history of Antarctica as manifested by the Vostok ice core. Beyond, and back to the late Pliocene, the record may serve as a proxy for both mid-latitude and Antarctic polar plateau air temperature. The gamma ray signal, which is atmospheric, also resembles the ocean climate history represented by oxygen isotope time series.