846 resultados para Destabilizing subjectivity
Resumo:
Introduction: Over the last decades, Swiss sports clubs have lost their "monopoly" in the market for sports-related services and increasingly are in competition with other sports providers. For many sport clubs long-term membership cannot be seen as a matter of course. Current research on sports clubs in Switzerland – as well as for other European countries – confirms the increasing difficulties in achieving long-term member commitment. Looking at recent findings of the Swiss sport clubs report (Lamprecht, Fischer & Stamm, 2012), it can be noted, that a decrease in memberships does not equally affect all clubs. There are sports clubs – because of their specific situational and structural conditions – that have few problems with member fluctuation, while other clubs show considerable declines in membership. Therefore, a clear understanding of individual and structural factors that trigger and sustain member commitment would help sports clubs to tackle this problem more effectively. This situation poses the question: What are the individual and structural determinants that influence the tendency to continue or to quit the membership? Methods: Existing research has extensively investigated the drivers of members’ commitment at an individual level. As commitment of members usually occurs within an organizational context, the characteristics of the organisation should be also considered. However, this context has been largely neglected in current research. This presentation addresses both the individual characteristics of members and the corresponding structural conditions of sports clubs resulting in a multi-level framework for the investigation of the factors of members’ commitment in sports clubs. The multilevel analysis grant a adequate handling of hierarchically structured data (e.g., Hox, 2002). The influences of both the individual and context level on the stability of memberships are estimated in multi-level models based on a sample of n = 1,434 sport club members from 36 sports clubs. Results: Results of these multi-level analyses indicate that commitment of members is not just an outcome of individual characteristics, such as strong identification with the club, positively perceived communication and cooperation, satisfaction with sports clubs’ offers, or voluntary engagement. It is also influenced by club-specific structural conditions: stable memberships are more probable in rural sports clubs, and in clubs that explicitly support sociability, whereas sporting-success oriented goals in clubs have a destabilizing effect. Discussion/Conclusion: The proposed multi-level framework and the multi-level analysis can open new perspectives for research concerning commitment of members to sports clubs and other topics and problems of sport organisation research, especially in assisting to understand individual behavior within organizational contexts. References: Hox, J. J. (2002). Multilevel analysis: Techniques and applications. Mahwah: Lawrence Erlbaum. Lamprecht, M., Fischer, A., & Stamm, H.-P. (2012). Die Schweizer Sportvereine – Strukturen, Leistungen, Herausforderungen. Zurich: Seismo.
Resumo:
The activity of cytochrome P450 enzymes depends on the enzyme NADPH P450 oxidoreductase (POR). The aim of this study was to investigate the activity of the equine CYP3A94 using a system that allows to regulate the POR protein levels in mammalian cells. CYP3A94 and the equine POR were heterologously expressed in V79 cells. In the system used, the POR protein regulation is based on a destabilizing domain (DD) that transfers its instability to a fused protein. The resulting fusion protein is therefore degraded by the ubiquitin-proteasome system (UPS). Addition of "Shield-1" prevents the DD fusion protein from degradation. The change of POR levels at different Shield-1 concentrations was demonstrated by cytochrome c reduction, Western immunoblot analysis, and immunocytochemistry. The alteration of CYP3A94 activity was investigated using a substrate (BFC) known to detect CYP3A4 activity. Equine CYP3A94 was demonstrated to be metabolically active and its activity could be significantly elevated by co-expression of POR. Cytochrome c reduction was significantly increased in V79-CYP3A94/DD-POR cells compared to V79-CYP3A94 cells. Surprisingly, incubation with different Shield-1 concentrations resulted in a decrease in POR protein shown by Western immunoblot analysis. Cytochrome c reduction did not change significantly, but the CYP3A94 activity decreased more than 4-fold after incubation with 500 nM and 1 µM Shield-1 for 24 hours. No differences were obtained when V79-CYP3A94 POR cells with and without Shield-1 were compared. The basal activity levels of V79-CYP3A94/DD-POR cells were unexpectedly high, indicating that DD/POR is not degraded without Shield-1. Shield-1 decreased POR protein levels and CYP3A94 activity suggesting that Shield-1 might impair POR activity by an unknown mechanism. Although regulation of POR with the pPTuner system could not be obtained, the cell line V79-CYP3A94/DD-POR system can be used for further experiments to characterize the equine CYP3A94 since the CYP activity was significantly enhanced with co-expressed POR.
Resumo:
10.1002/hlca.200390311.abs A series of oligonucleotides containing (5′S)-5′-C-butyl- and (5′S)-5′-C-isopentyl-substituted 2′-deoxyribonucleosides were designed, prepared, and characterized with the intention to explore alkyl-zipper formation between opposing alkyl chains across the minor groove of oligonucleotide duplexes as a means to modulate DNA-duplex stability. From four possible arrangements of the alkyl groups that differ in the density of packing of the alkyl chains across the minor groove, three (duplex types I–III, Fig. 2) could experimentally be realized and their duplex-forming properties analyzed by UV-melting curves, CD spectroscopy, and isothermal titration calorimetry (ITC), as well as by molecular modeling. The results show that all arrangements of alkyl residues within the minor groove of DNA are thermally destabilizing by 1.5–3°/modification in Tm. We found that, within the proposed duplexes with more loosely packed alkyl groups (type-III duplexes), accommodation of alkyl residues without extended distorsion of the helical parameters of B-DNA is possible but does not lead to higher thermodynamic stability. The more densely packed and more unevenly distributed arrangement (type-II duplexes) seems to suffer from ecliptic positioning of opposite alkyl groups, which might account for a systematic negative contribution to stability due to steric interactions. The decreased stability in the type-III duplexes described here may be due either to missing hydrophobic interactions of the alkyl groups (not bulky enough to make close contacts), or to an overcompensation of favorable alkyl-zipper formation presumably by loss of structured H2O in the minor groove.
Resumo:
We describe the synthesis and incorporation into alpha-DNA of a novel conformationally constrained alpha-nucleoside analogue. The carbohydrate part of this analogue was prepared in 4 steps from the known bicyclic precursor 1 via a stereospecific, intramolecular, Et 3B mediated radical addition to a keto-function as the key step. The thus obtained intermediate 4 was transformed stereoselectively into the corresponding alpha-nucleoside analogues 7 and 8 containing the bases adenine and thymine, and were further elaborated into the phosphoramidite building blocks 11 and 12 . Both building blocks were incorporated into alpha-oligodeoxynucleotides and their pairing behavior to parallel complementary DNA studied by UV-melting experiments. Single substitutions of alpha-deoxyribnucleoside units by the new analogues in the center of duplexes were found to be thermally destabilizing by only -0.8 to -3.1›C.
Resumo:
We have incorporated pyrrolidino-C-nucleosides (pyrrolidino-pseudonucleosides) containing the base uracil and N-1-methyl uracil into oligodeoxynucleotides and compared their thermal duplex and triplex stabilities with unmodified or pseudouridine-containing oligodeoxynucleotides. We find relative destabilizations of triplex formation by ca. -13 to -1 degrees C per modification (relative to thymidine) in a strongly sequence dependent mode. Duplex formation is less destabilizing and more homogeneous with -4 to -2 degrees C per modification