947 resultados para Cyans-based ionic liquids


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present work, the solid–liquid–liquid equilibrium in the binary system of diethylamine (1) and ionic liquid (2) 1-methyl-3-ethylimidazolium bis(trifluoromethylsulfonyl)imide and solid–liquid equilibrium in system 1-methyl-3-butylimidazolium bis(trifluoromethylsulfonyl)imide was studied. Phase equilibrium was determined experimentally by means of a polythermic method. These data were then used to determine the activity coefficients for both ionic liquids. For the pure diethylamine the enthalpy of fusion was determined by differential scanning calorimetry, because to the best of our knowledge, this data is not yet reported in the open literature, a contrario of pure ionic liquids tested during this work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The immobilization of a ruthenium complex (Ru2Cl4(az-tpy)2) within a range of supported ionic liquids ([C4C1im]Cl, [C4C1im][NTf2], [C6C1im]Cl, [C4C1pyrr]Br, [C4C1im]Br, [C4C1pyrr]Cl) dispersed silica (SILP) operates as an efficient heterogeneous catalyst in oxidation of long chain linear primary amines to corresponding nitriles. This reaction follows a “green” route using a cheap and easy to handles oxidant (oxygen or air). The conversion was found to be strongly influenced by the alkyl chain length of the amine substrate and the choice of oxidant. No condensation reaction was observed between the starting amines and the selectivity to nitrile is 100%. Moving from a composition of 20 atm N2/5 atm O2 to 5 atm N2/20 atm O2 led to enhancements in the conversion (n-alkylamines) and selectivity (benzonitrile) which have been correlated with an increase of the solubilized oxygen. This was further supported by using different inert gas (nitrogen, helium, argon)/oxygen mixtures indicating that the O2 solubility in the SILP system, has an important effect on conversions and TON in this reaction using SILP catalysts. Experiments performed in the presence of CO2 led to a different behaviour due to the formation of amine-CO2 adducts. The application of the Weisz–Prater criterion confirmed the absence of any diffusional constraints.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study is to provide an alternative model approach, i.e., artificial neural network (ANN) model, to predict the compositional viscosity of binary mixtures of room temperature ionic liquids (in short as ILs) [C n-mim] [NTf 2] with n=4, 6, 8, 10 in methanol and ethanol over the entire range of molar fraction at a broad range of temperatures from T=293.0328.0K. The results show that the proposed ANN model provides alternative way to predict compositional viscosity successfully with highly improved accuracy and also show its potential to be extensively utilized to predict compositional viscosity over a wide range of temperatures and more complex viscosity compositions, i.e., more complex intermolecular interactions between components in which it would be hard or impossible to establish the analytical model. © 2010 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of biomass as a source of fuel is on the sharp increase. In parallel with this expansion, new chemical processes and technologies are required to improve efficiency, sustainability, and profitability.
Biocatalytic and chemocatalytic methods can be combined to affect the conversion of bio-alcohols, and convert them to valuable chemical targets in an atom efficient and environmentally benign manor. Fermentation offers a useful first step in biomass conversion, as whole cell biocatalysts can provide sustained activity when fed with crude biomass. Coupling this with homogeneous and/or heterogeneous catalysis enables the preparation of a diverse product range. The transition between biocatalytic and chemocatalytic steps can be assisted by utilising ionic liquids.
Ionic liquids have potential roles in biorefineries that generate alcohols; as an extractant, reaction medium, and catalytic reagent. Underpinning the potential of ionic liquids in this area is: 1. the ability of ionic liquids to solubilize polyols and alcohols; 2. the facility to functionalise ionic liquids and tune properties; 3. the low volatility of ionic liquids.
The FP7 project GRAIL will be highlighted; this project focusses on the utilisation of glycerol formed as a by-product in biodiesel synthesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ternary compounds of copper indium selenide nano- and microsized materials were prepared through colloidal synthesis using an indium(III) selenide precursor and copper(I) chloride via a microwave-assisted ionothermal route. The indium(III) selenide precursor used in the reaction was formed in situ from a diphenyl diselenide precursor and chloroindate(III) ionic liquids (ILs), also via a microwave-assisted ionothermal route. The crystal structures of three intermediates, namely, CuCl2(OMe)2(H2O)){Cu(PhSeO2)2}n, [CuCl(Se2Ph2)2]n, and [C8mim]3{Cu(I)Cl2Cu(II)OCl8}n, were determined after formation through a ionothermal procedure utilizing metal-containing imidazolium ILs and a selenium precursor with conventional heating. Herein, we compare the use of microwave irradiation over conventional heating with different ILs on the stoichiometry of the resulting products. The influence of the reaction temperature, reaction time, order of addition of reagents, and variation of ILs, which were characterized using PXRD, SEM, and EDX, on the final products was investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Combining whole cell biocatalysis and chemocatalysis in a single reaction sequence avoids unnecessary separations, and the associated waste and energy consumption. Bacterial fermentation has been employed to convert waste glycerol from biodiesel production into 1,3-propanediol. This 1,3-propanediol can be extracted selectively from the aqueous fermentation broth using ionic liquids. 1,3-propanediol in ionic liquid solution was converted to propanal by hydrogen transfer initiated dehydration (HTID) catalysed by a Cp*IrCl2(NHC) (Cp* = pentamethylcyclopentadienyl; NHC = carbene ligand) complex. The use of an ionic liquid solvent enabled the reaction to be performed under reduced pressure, facilitating the isolation of the product, and improving the reaction selectivity. The Ir(III) catalyst in ionic liquid was found to be highly recyclable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over recent years, ionic liquids have emerged as a class of novel fluids that have inspired the development of a number of new products and processes. The ability to design these materials with specific functionalities and properties means that they are highly relevant to the growing philosophy of chemical-product design. This is particularly appropriate in the context of a chemical industry that is becoming increasingly focussed on small-volume, high-value added products with relatively short times to market. To support such product and process development, a number of tools can be utilised. A key requirement is that the tool can predict the physical properties and activity coefficients of multi-component mixtures and, if required, model the process in which the materials will be used. Multi-scale simulations that span density functional theory (DFT) to process-engineering computations can address the relevant time and length scales and have increased in usage with the availability of cheap and powerful computers. Herein we will discuss the area of engineering calculations relating to the design of ionic liquid processes, that is, the computational tools that bridge this gap and allow for process simulation tools to utilise and assist in the design of ionic liquids. It will be shown that, at present, it is possible to use available tools to estimate many important properties of ionic liquids and mixtures containing them with a sufficient level of accuracy for preliminary design and selection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work reports studies on the new compounds obtained by the combination of polyoxoanions derived from the Keggin and Lindquist structures with several cations. The studies were first focused on the monolacunary Keggin polyoxoanions [PW11O39M(H2O)]n- (M = FeIII, MnIII and n = 4; M = CoII and n = 5) and its combination with the organic cation 1-butyl-3-methylimidazolium (Bmim+). The association of Bmim+ cation with the polyoxoanion [PW11O39Fe(H2O)]4- allowed to isolate for the first time both the monomeric and the dimeric [PW11O39Fe)2O]10- anions, with the same cation and using simple bench techniques by pH manipulation. Studies regarding the stability of these inorganic species in solution indicated that both species are present in solution in equilibrium. However, the inability to up until now isolate the dimeric unit through simple bench methods, lead to the hypothesis that the cation had a role to play in the selective precipitation of either the monomer or the dimer. Repetition of the same procedures with the polyoxoanions [SiW11O39Fe(H2O)]5- and [PW11O39M(H2O)]n- (M = FeIII, MnIII and n = 4; M = Co and n = 5), afforded only the corresponding monomeric compounds, (Bmim)5[SiW11O39FeIII(H2O)]· 4H2O (3), (Bmim)5[PW11O39CoII(H2O)]· 0.5 H2O, (4) and (Bmim)5[PW11O39MnIII(H2O)]· 0.5 H2O (5). Moreover, the combination of Bmim+ and the polyoxotungstate [PW11O39Co(H2O)]5- afforded two different crystal structures, depending on the synthetic conditions. Thus, a ratio Bmim+:POM of 5:1 and the presence of K+ cations (due to addition of KOH) led to a formula Na2K(Bmim)2[PW11.2O39Co0.8(H2O)]·7H2O (4a), whilst a ratio Bmim:POM of 7:1 led to the formation of a crystal with the chemical formula Na2(Bmim)8[PW11O39Co(H2O)]2·3H2O (4b). Electrochemical studies were performed with carbon paste electrodes modified with BmimCl to investigate the influence of the Bmim+ cation in the performance of the electrodes. The voltametric measurements obtained from solutions containing the anions [PW11O39]7- and [SiW11O39]8- are presented. Results pointed to an improvement of the acquired voltametric signal with a slight addition of BmimCl (up to 2.5% w/w), specially in the studies regarding pH variation. Additional synthesis were carried out with both the cations Omim+ and THTP+.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

According to the World Health Organization, around 8.2 million people die each year with cancer. Most patients do not perform routine diagnoses and the symptoms, in most situations, occur when the patient is already at an advanced stage of the disease, consequently resulting in a high cancer mortality. Currently, prostate cancer is the second leading cause of death among males worldwide. In Portugal, this is the most diagnosed type of cancer and the third that causes more deaths. Taking into account that there is no cure for advanced stages of prostate cancer, the main strategy comprises an early diagnosis to increase the successful rate of the treatment. The prostate specific antigen (PSA) is an important biomarker of prostate cancer that can be detected in biological fluids, including blood, urine and semen. However, the commercial kits available are addressed for blood samples and the commonly used analytical methods for their detection and quantification requires specialized staff, specific equipment and extensive sample processing, resulting in an expensive process. Thus, the aim of this MSc thesis consisted on the development of a simple, efficient and less expensive method for the extraction and concentration of PSA from urine samples using aqueous biphasic systems (ABS) composed of ionic liquids. Initially, the phase diagrams of a set of aqueous biphasic systems composed of an organic salt and ionic liquids were determined. Then, their ability to extract PSA was ascertained. The obtained results reveal that in the tested systems the prostate specific antigen is completely extracted to the ionic-liquid-rich phase in a single step. Subsequently, the applicability of the investigated ABS for the concentration of PSA was addressed, either from aqueous solutions or urine samples. The low concentration of this biomarker in urine (clinically significant below 150 ng/mL) usually hinders its detection by conventional analytical techniques. The obtained results showed that it is possible to extract and concentrate PSA, up to 250 times in a single-step, so that it can be identified and quantified using less expensive techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

According to the World Health Organization, around 8.2 million people die each year with cancer. Most patients do not perform routine diagnoses and the symptoms, in most situations, occur when the patient is already at an advanced stage of the disease, consequently resulting in a high cancer mortality. Currently, prostate cancer is the second leading cause of death among males worldwide. In Portugal, this is the most diagnosed type of cancer and the third that causes more deaths. Taking into account that there is no cure for advanced stages of prostate cancer, the main strategy comprises an early diagnosis to increase the successful rate of the treatment. The prostate specific antigen (PSA) is an important biomarker of prostate cancer that can be detected in biological fluids, including blood, urine and semen. However, the commercial kits available are addressed for blood samples and the commonly used analytical methods for their detection and quantification requires specialized staff, specific equipment and extensive sample processing, resulting in an expensive process. Thus, the aim of this MSc thesis consisted on the development of a simple, efficient and less expensive method for the extraction and concentration of PSA from urine samples using aqueous biphasic systems (ABS) composed of ionic liquids. Initially, the phase diagrams of a set of aqueous biphasic systems composed of an organic salt and ionic liquids were determined. Then, their ability to extract PSA was ascertained. The obtained results reveal that in the tested systems the prostate specific antigen is completely extracted to the ionic-liquid-rich phase in a single step. Subsequently, the applicability of the investigated ABS for the concentration of PSA was addressed, either from aqueous solutions or urine samples. The low concentration of this biomarker in urine (clinically significant below 150 ng/mL) usually hinders its detection by conventional analytical techniques. The obtained results showed that it is possible to extract and concentrate PSA, up to 250 times in a single-step, so that it can be identified and quantified using less expensive techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main objective of the present work is the study of a profitable process not only in the extraction and selective separation of lycopene and β-carotene, two compounds present in tomato, but also in its potential application to food industry wastes. This is one of the industries that produce larger amounts of wastes, which are rich in high value biomolecules with great economic interest. However, the conventional methods used to extract this kind of compounds are expensive which limits their application at large scale. Lycopene and βcarotene are carotenoids with high commercial value, known for their antioxidant activity and benefits to human health. Their biggest source is tomato, one of the world’s most consumed fruits, reason for which large quantities of waste is produced. This work focuses on the study of diverse solvents with a high potential to extract carotenoids from tomato, as well as the search for more environmentally benign solvents than those currently used to extract lycopene and β-carotene from biomass. Additionally, special attention was paid to the creation of a continuous process that would allow the fractionation of the compounds for further purification. Thus, the present work started with the extraction of both carotenoids using a wide range of solvents, namely, organic solvents, conventional salts, ionic liquids, polymers and surfactants. In this stage, each solvent was evaluated in what regards their capacity of extraction as well as their penetration ability in biomass. The results collected showed that an adequate selection of the solvents may lead to the complete extraction of both carotenoids in one single step, particularly acetone and tetrahydrofuran were the most effective ones. However, the general low penetration capacity of salts, ionic liquids, polymers and surfactants makes these solvents ineffective in the solid-liquid extraction process. As the organic solvents showed the highest capacity to extract lycopene and βcarotene, in particular tetrahydrofuran and acetone, the latter solvent used in the development process of fractionation, using to this by strategic use of solvents. This step was only successfully developed through the manipulation of the solubility of each compound in ethanol and n-hexane. The results confirmed the possibility of fractionating the target compounds using the correct addition order of the solvents. Approximately, 39 % of the β-carotene was dissolved in ethanol and about 64 % of lycopene was dissolved in n-hexane, thus indicating their separation for two different solvents which shows the selective character of the developed process without any prior stage optimization. This study revealed that the use of organic solvents leads to selective extraction of lycopene and β-carotene, allowing diminishing the numerous stages involved in conventional methods. At the end, it was possible to idealize a sustainable and of high industrial relevance integrated process, nevertheless existing the need for additional optimization studies in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A flow injection analysis (FIA) system comprising a cysteine selective electrode as detection system was developed for determination of this amino acid in pharmaceuticals. Several electrodes were constructed for this purpose, having PVC membranes with different ionic exchangers and mediator solvents. Better working characteristics were attained with membranes comprising o-nitrophenyl octyl ether as mediator solvent and a tetraphenylborate based ionic-sensor. Injection of 500 µL standard solutions into an ionic strength adjuster carrier (3x10-3 M) of barium chloride flowing at 2.4mL min-1, showed linearity ranges from 5.0x10-5 to 5.0x10-3 M, with slopes of 76.4±0.6mV decade-1 and R2>0.9935. Slope decreased significantly under the requirement of a pH adjustment, selected at 4.5. Interference of several compounds (sodium, potassium, magnesium, barium, glucose, fructose, and sucrose) was estimated by potentiometric selectivity coefficients and considered negligible. Analysis of real samples were performed and considered accurate, with a relative error to an independent method of +2.7%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Química e Biológica

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Química e Bioquímica