862 resultados para Context-based
Resumo:
SRAM-based FPGAs are sensitive to radiation effects. Soft errors can appear and accumulate, potentially defeating mitigation strategies deployed at the Application Layer. Therefore, Configuration Memory scrubbing is required to improve radiation tolerance of such FPGAs in space applications. Virtex FPGAs allow runtime scrubbing by means of dynamic partial reconfiguration. Even with scrubbing, intra-FPGA TMR systems are subjected to common-mode errors affecting more than one design domain. This is solved in inter-FPGA TMR systems at the expense of a higher cost, power and mass. In this context, a self-reference scrubber for device-level TMR system based on Xilinx Virtex FPGAs is presented. This scrubber allows for a fast SEU/MBU detection and correction by peer frame comparison without needing to access a golden configuration memory
Resumo:
In the field of detection and monitoring of dynamic objects in quasi-static scenes, background subtraction techniques where background is modeled at pixel-level, although showing very significant limitations, are extensively used. In this work we propose a novel approach to background modeling that operates at region-level in a wavelet based multi-resolution framework. Based on a segmentation of the background, characterization is made for each region independently as a mixture of K Gaussian modes, considering the model of the approximation and detail coefficients at the different wavelet decomposition levels. Background region characterization is updated along time, and the detection of elements of interest is carried out computing the distance between background region models and those of each incoming image in the sequence. The inclusion of the context in the modeling scheme through each region characterization makes the model robust, being able to support not only gradual illumination and long-term changes, but also sudden illumination changes and the presence of strong shadows in the scene
Resumo:
We propose a modular, assertion-based system for verification and debugging of large logic programs, together with several interesting models for checking assertions statically in modular programs, each with different characteristics and representing different trade-offs. Our proposal is a modular and multivariant extensión of our previously proposed abstract assertion checking model and we also report on its implementation in the CiaoPP system. In our approach, the specification of the program, given by a set of assertions, may be partial, instead of the complete specification required by raditional verification systems. Also, the system can deal with properties which cannot always be determined at compile-time. As a result, the proposed system needs to work with safe approximations: all assertions proved correct are guaranteed to be valid and all errors actual errors. The use of modular, context-sensitive static analyzers also allows us to introduce a new distinction between assertions checked in a particular context or checked in general.
Resumo:
Several models for context-sensitive analysis of modular programs have been proposed, each with different characteristics and representing different trade-offs. The advantage of these context-sensitive analyses is that they provide information which is potentially more accurate than that provided by context-free analyses. Such information can then be applied to validating/debugging the program and/or to specializing the program in order to obtain important performance improvements. Some very preliminary experimental results have also been reported for some of these models which provided initial evidence on their potential. However, further experimentation, which is needed in order to understand the many issues left open and to show that the proposed modes scale and are usable in the context of large, real-life modular programs, was left as future work. The aim of this paper is two-fold. On one hand we provide an empirical comparison of the different models proposed in previous work, as well as experimental data on the different choices left open in those designs. On the other hand we explore the scalability of these models by using larger modular programs as benchmarks. The results have been obtained from a realistic implementation of the models, integrated in a production-quality compiler (CiaoPP/Ciao). Our experimental results shed light on the practical implications of the different design choices and of the models themselves. We also show that contextsensitive analysis of modular programs is indeed feasible in practice, and that in certain critical cases it provides better performance results than those achievable by analyzing the whole program at once, specially in terms of memory consumption and when reanalyzing after making changes to a program, as is often the case during program development.
Resumo:
Proof carrying code (PCC) is a general is originally a roof in ñrst-order logic of certain vermethodology for certifying that the execution of an un- ification onditions and the checking process involves trusted mobile code is safe. The baste idea is that the ensuring that the certifícate is indeed a valid ñrst-order code supplier attaches a certifícate to the mobile code proof. which the consumer checks in order to ensure that the The main practical difñculty of PCC techniques is in code is indeed safe. The potential benefit is that the generating safety certiñeates which at the same time: i) consumer's task is reduced from the level of proving to allow expressing interesting safety properties, ii) can be the level of checking. Recently, the abstract interpre- generated automatically and, iii) are easy and efficient tation techniques developed, in logic programming have to check. In [1], the abstract interpretation techniques been proposed as a basis for PCC. This extended ab- [5] developed in logic programming1 are proposed as stract reports on experiments which illustrate several is- a basis for PCC. They offer a number of advantages sues involved in abstract interpretation-based certifica- for dealing with the aforementioned issues. In particution. First, we describe the implementation of our sys- lar, the xpressiveness of existing abstract domains will tem in the context of CiaoPP: the preprocessor of the be implicitly available in abstract interpretation-based Ciao multi-paradigm programming system. Then, by code certification to deñne a wide range of safety propermeans of some experiments, we show how code certifi- ties. Furthermore, the approach inherits the automation catión is aided in the implementation of the framework. and inference power of the abstract interpretation en- Finally, we discuss the application of our method within gines used in (Constraint) Logic Programming, (C)LP. the área, of pervasive systems
Resumo:
The selection of predefined analytic grids (partitions of the numeric ranges) to represent input and output functions as histograms has been proposed as a mechanism of approximation in order to control the tradeoff between accuracy and computation times in several áreas ranging from simulation to constraint solving. In particular, the application of interval methods for probabilistic function characterization has been shown to have advantages over other methods based on the simulation of random samples. However, standard interval arithmetic has always been used for the computation steps. In this paper, we introduce an alternative approximate arithmetic aimed at controlling the cost of the interval operations. Its distinctive feature is that grids are taken into account by the operators. We apply the technique in the context of probability density functions in order to improve the accuracy of the probability estimates. Results show that this approach has advantages over existing approaches in some particular situations, although computation times tend to increase significantly when analyzing large functions.
Resumo:
The uptake of Linked Data (LD) has promoted the proliferation of datasets and their associated ontologies for describing different domains. Par-ticular LD development characteristics such as agility and web-based architec-ture necessitate the revision, adaption, and lightening of existing methodologies for ontology development. This thesis proposes a lightweight method for ontol-ogy development in an LD context which will be based in data-driven agile de-velopments, existing resources to be reused, and the evaluation of the obtained products considering both classical ontological engineering principles and LD characteristics.
Resumo:
CiaoPP is the abstract interpretation-based preprocessor of the Ciao multi-paradigm (Constraint) Logic Programming system. It uses modular, incremental abstract interpretation as a fundamental tool to obtain information about programs. In CiaoPP, the semantic approximations thus produced have been applied to perform high- and low-level optimizations during program compilation, including transformations such as múltiple abstract specialization, parallelization, partial evaluation, resource usage control, and program verification. More recently, novel and promising applications of such semantic approximations are being applied in the more general context of program development such as program verification. In this work, we describe our extensión of the system to incorpórate Abstraction-Carrying Code (ACC), a novel approach to mobile code safety. ACC follows the standard strategy of associating safety certificates to programs, originally proposed in Proof Carrying- Code. A distinguishing feature of ACC is that we use an abstraction (or abstract model) of the program computed by standard static analyzers as a certifícate. The validity of the abstraction on the consumer side is checked in a single-pass by a very efficient and specialized abstractinterpreter. We have implemented and benchmarked ACC within CiaoPP. The experimental results show that the checking phase is indeed faster than the proof generation phase, and that the sizes of certificates are reasonable. Moreover, the preprocessor is based on compile-time (and run-time) tools for the certification of CLP programs with resource consumption assurances.
Resumo:
Proof carrying code is a general methodology for certifying that the execution of an untrusted mobile code is safe, according to a predefined safety policy. The basic idea is that the code supplier attaches a certifícate (or proof) to the mobile code which, then, the consumer checks in order to ensure that the code is indeed safe. The potential benefit is that the consumer's task is reduced from the level of proving to the level of checking, a much simpler task. Recently, the abstract interpretation techniques developed in logic programming have been proposed as a basis for proof carrying code [1]. To this end, the certifícate is generated from an abstract interpretation-based proof of safety. Intuitively, the verification condition is extracted from a set of assertions guaranteeing safety and the answer table generated during the analysis. Given this information, it is relatively simple and fast to verify that the code does meet this proof and so its execution is safe. This extended abstract reports on experiments which illustrate several issues involved in abstract interpretation-based code certification. First, we describe the implementation of our system in the context of CiaoPP: the preprocessor of the Ciao multi-paradigm (constraint) logic programming system. Then, by means of some experiments, we show how code certification is aided in the implementation of the framework. Finally, we discuss the application of our method within the área of pervasive systems which may lack the necessary computing resources to verify safety on their own. We herein illustrate the relevance of the information inferred by existing cost analysis to control resource usage in this context. Moreover, since the (rather complex) analysis phase is replaced by a simpler, efficient checking process at the code consumer side, we believe that our abstract interpretation-based approach to proof-carrying code becomes practically applicable to this kind of systems.
Resumo:
Los sensores inerciales (acelerómetros y giróscopos) se han ido introduciendo poco a poco en dispositivos que usamos en nuestra vida diaria gracias a su minituarización. Hoy en día todos los smartphones contienen como mínimo un acelerómetro y un magnetómetro, siendo complementados en losmás modernos por giróscopos y barómetros. Esto, unido a la proliferación de los smartphones ha hecho viable el diseño de sistemas basados en las medidas de sensores que el usuario lleva colocados en alguna parte del cuerpo (que en un futuro estarán contenidos en tejidos inteligentes) o los integrados en su móvil. El papel de estos sensores se ha convertido en fundamental para el desarrollo de aplicaciones contextuales y de inteligencia ambiental. Algunos ejemplos son el control de los ejercicios de rehabilitación o la oferta de información referente al sitio turístico que se está visitando. El trabajo de esta tesis contribuye a explorar las posibilidades que ofrecen los sensores inerciales para el apoyo a la detección de actividad y la mejora de la precisión de servicios de localización para peatones. En lo referente al reconocimiento de la actividad que desarrolla un usuario, se ha explorado el uso de los sensores integrados en los dispositivos móviles de última generación (luz y proximidad, acelerómetro, giróscopo y magnetómetro). Las actividades objetivo son conocidas como ‘atómicas’ (andar a distintas velocidades, estar de pie, correr, estar sentado), esto es, actividades que constituyen unidades de actividades más complejas como pueden ser lavar los platos o ir al trabajo. De este modo, se usan algoritmos de clasificación sencillos que puedan ser integrados en un móvil como el Naïve Bayes, Tablas y Árboles de Decisión. Además, se pretende igualmente detectar la posición en la que el usuario lleva el móvil, no sólo con el objetivo de utilizar esa información para elegir un clasificador entrenado sólo con datos recogidos en la posición correspondiente (estrategia que mejora los resultados de estimación de la actividad), sino también para la generación de un evento que puede producir la ejecución de una acción. Finalmente, el trabajo incluye un análisis de las prestaciones de la clasificación variando el tipo de parámetros y el número de sensores usados y teniendo en cuenta no sólo la precisión de la clasificación sino también la carga computacional. Por otra parte, se ha propuesto un algoritmo basado en la cuenta de pasos utilizando informaiii ción proveniente de un acelerómetro colocado en el pie del usuario. El objetivo final es detectar la actividad que el usuario está haciendo junto con la estimación aproximada de la distancia recorrida. El algoritmo de cuenta pasos se basa en la detección de máximos y mínimos usando ventanas temporales y umbrales sin requerir información específica del usuario. El ámbito de seguimiento de peatones en interiores es interesante por la falta de un estándar de localización en este tipo de entornos. Se ha diseñado un filtro extendido de Kalman centralizado y ligeramente acoplado para fusionar la información medida por un acelerómetro colocado en el pie del usuario con medidas de posición. Se han aplicado también diferentes técnicas de corrección de errores como las de velocidad cero que se basan en la detección de los instantes en los que el pie está apoyado en el suelo. Los resultados han sido obtenidos en entornos interiores usando las posiciones estimadas por un sistema de triangulación basado en la medida de la potencia recibida (RSS) y GPS en exteriores. Finalmente, se han implementado algunas aplicaciones que prueban la utilidad del trabajo desarrollado. En primer lugar se ha considerado una aplicación de monitorización de actividad que proporciona al usuario información sobre el nivel de actividad que realiza durante un período de tiempo. El objetivo final es favorecer el cambio de comportamientos sedentarios, consiguiendo hábitos saludables. Se han desarrollado dos versiones de esta aplicación. En el primer caso se ha integrado el algoritmo de cuenta pasos en una plataforma OSGi móvil adquiriendo los datos de un acelerómetro Bluetooth colocado en el pie. En el segundo caso se ha creado la misma aplicación utilizando las implementaciones de los clasificadores en un dispositivo Android. Por otro lado, se ha planteado el diseño de una aplicación para la creación automática de un diario de viaje a partir de la detección de eventos importantes. Esta aplicación toma como entrada la información procedente de la estimación de actividad y de localización además de información almacenada en bases de datos abiertas (fotos, información sobre sitios) e información sobre sensores reales y virtuales (agenda, cámara, etc.) del móvil. Abstract Inertial sensors (accelerometers and gyroscopes) have been gradually embedded in the devices that people use in their daily lives thanks to their miniaturization. Nowadays all smartphones have at least one embedded magnetometer and accelerometer, containing the most upto- date ones gyroscopes and barometers. This issue, together with the fact that the penetration of smartphones is growing steadily, has made possible the design of systems that rely on the information gathered by wearable sensors (in the future contained in smart textiles) or inertial sensors embedded in a smartphone. The role of these sensors has become key to the development of context-aware and ambient intelligent applications. Some examples are the performance of rehabilitation exercises, the provision of information related to the place that the user is visiting or the interaction with objects by gesture recognition. The work of this thesis contributes to explore to which extent this kind of sensors can be useful to support activity recognition and pedestrian tracking, which have been proven to be essential for these applications. Regarding the recognition of the activity that a user performs, the use of sensors embedded in a smartphone (proximity and light sensors, gyroscopes, magnetometers and accelerometers) has been explored. The activities that are detected belong to the group of the ones known as ‘atomic’ activities (e.g. walking at different paces, running, standing), that is, activities or movements that are part of more complex activities such as doing the dishes or commuting. Simple, wellknown classifiers that can run embedded in a smartphone have been tested, such as Naïve Bayes, Decision Tables and Trees. In addition to this, another aim is to estimate the on-body position in which the user is carrying the mobile phone. The objective is not only to choose a classifier that has been trained with the corresponding data in order to enhance the classification but also to start actions. Finally, the performance of the different classifiers is analysed, taking into consideration different features and number of sensors. The computational and memory load of the classifiers is also measured. On the other hand, an algorithm based on step counting has been proposed. The acceleration information is provided by an accelerometer placed on the foot. The aim is to detect the activity that the user is performing together with the estimation of the distance covered. The step counting strategy is based on detecting minima and its corresponding maxima. Although the counting strategy is not innovative (it includes time windows and amplitude thresholds to prevent under or overestimation) no user-specific information is required. The field of pedestrian tracking is crucial due to the lack of a localization standard for this kind of environments. A loosely-coupled centralized Extended Kalman Filter has been proposed to perform the fusion of inertial and position measurements. Zero velocity updates have been applied whenever the foot is detected to be placed on the ground. The results have been obtained in indoor environments using a triangulation algorithm based on RSS measurements and GPS outdoors. Finally, some applications have been designed to test the usefulness of the work. The first one is called the ‘Activity Monitor’ whose aim is to prevent sedentary behaviours and to modify habits to achieve desired objectives of activity level. Two different versions of the application have been implemented. The first one uses the activity estimation based on the step counting algorithm, which has been integrated in an OSGi mobile framework acquiring the data from a Bluetooth accelerometer placed on the foot of the individual. The second one uses activity classifiers embedded in an Android smartphone. On the other hand, the design of a ‘Travel Logbook’ has been planned. The input of this application is the information provided by the activity and localization modules, external databases (e.g. pictures, points of interest, weather) and mobile embedded and virtual sensors (agenda, camera, etc.). The aim is to detect important events in the journey and gather the information necessary to store it as a journal page.
Resumo:
Hoy en día las técnicas de adquisición de imágenes tridimensionales son comunes en diversas áreas, pero cabe destacar la relevancia que han adquirido en el ámbito de la imagen biomédica, dentro del cual encontramos una amplia gama de técnicas como la microscopía confocal, microscopía de dos fotones, microscopía de fluorescencia mediante lámina de luz, resonancia magnética nuclear, tomografía por emisión de positrones, tomografía de coherencia óptica, ecografía 3D y un largo etcétera. Un denominador común de todas esas aplicaciones es la constante necesidad por aumentar la resolución y la calidad de las imágenes adquiridas. En algunas de dichas técnicas de imagen tridimensional se da una interesante situación: aunque que cada volumen adquirido no contiene información suficiente para representar el objeto bajo estudio dentro de los parámetros de calidad requeridos por algunas aplicaciones finales, el esquema de adquisición permite la obtención de varios volúmenes que representan diferentes vistas de dicho objeto, de tal forma que cada una de las vistas proporciona información complementaria acerca del mismo. En este tipo de situación es posible, mediante la combinación de varias de esas vistas, obtener una mejor comprensión del objeto que a partir de cada una de ellas por separado. En el contexto de esta Tesis Doctoral se ha propuesto, desarrollado y validado una nueva metodología de proceso de imágenes basada en la transformada wavelet disc¬reta para la combinación, o fusión, de varias vistas con información complementaria de un mismo objeto. El método de fusión propuesto aprovecha la capacidad de descom¬posición en escalas y orientaciones de la transformada wavelet discreta para integrar en un solo volumen toda la información distribuida entre el conjunto de vistas adquiridas. El trabajo se centra en dos modalidades diferentes de imagen biomédica que per¬miten obtener tales adquisiciones multi-vista. La primera es una variante de la micro¬scopía de fluorescencia, la microscopía de fluorescencia mediante lámina de luz, que se utiliza para el estudio del desarrollo temprano de embriones vivos en diferentes modelos animales, como el pez cebra o el erizo de mar. La segunda modalidad es la resonancia magnética nuclear con realce tardío, que constituye una valiosa herramienta para evaluar la viabilidad del tejido miocárdico en pacientes con diversas miocardiopatías. Como parte de este trabajo, el método propuesto ha sido aplicado y validado en am¬bas modalidades de imagen. En el caso de la aplicación a microscopía de fluorescencia, los resultados de la fusión muestran un mejor contraste y nivel de detalle en comparación con cualquiera de las vistas individuales y el método no requiere de conocimiento previo acerca la función de dispersión puntual del sistema de imagen. Además, los resultados se han comparado con otros métodos existentes. Con respecto a la aplicación a imagen de resonancia magnética con realce tardío, los volúmenes fusionados resultantes pre-sentan una mejora cuantitativa en la nitidez de las estructuras relevantes y permiten una interpretación más sencilla y completa de la compleja estructura tridimensional del tejido miocárdico en pacientes con cardiopatía isquémica. Para ambas aplicaciones los resultados de esta tesis se encuentran actualmente en uso en los centros clínicos y de investigación con los que el autor ha colaborado durante este trabajo. Además se ha puesto a libre disposición de la comunidad científica la implementación del método de fusión propuesto. Por último, se ha tramitado también una solicitud de patente internacional que cubre el método de visualización desarrollado para la aplicación de Resonancia Magnética Nuclear. Abstract Nowadays three dimensional imaging techniques are common in several fields, but es-pecially in biomedical imaging, where we can find a wide range of techniques including: Laser Scanning Confocal Microscopy, Laser Scanning Two Photon Microscopy, Light Sheet Fluorescence Microscopy, Magnetic Resonance Imaging, Positron Emission To-mography, Optical Coherence Tomography, 3D Ultrasound Imaging, etc. A common denominator of all those applications being the constant need for further increasing resolution and quality of the acquired images. Interestingly, in some of the mentioned three-dimensional imaging techniques a remarkable situation arises: while a single volume does not contain enough information to represent the object being imaged within the quality parameters required by the final application, the acquisition scheme allows recording several volumes which represent different views of a given object, with each of the views providing complementary information. In this kind of situation one can get a better understanding of the object by combining several views instead of looking at each of them separately. Within such context, in this PhD Thesis we propose, develop and test new image processing methodologies based on the discrete wavelet transform for the combination, or fusion, of several views containing complementary information of a given object. The proposed fusion method exploits the scale and orientation decomposition capabil¬ities of the discrete wavelet transform to integrate in a single volume all the available information distributed among the set of acquired views. The work focuses in two different biomedical imaging modalities which provide such multi-view datasets. The first one is a particular fluorescence microscopy technique, Light-Sheet Fluorescence Microscopy, used for imaging and gaining understanding of the early development of live embryos from different animal models (like zebrafish or sea urchin). The second is Delayed Enhancement Magnetic Resonance Imaging, which is a valuable tool for assessing the viability of myocardial tissue on patients suffering from different cardiomyopathies. As part of this work, the proposed method was implemented and then validated on both imaging modalities. For the fluorescence microscopy application, the fusion results show improved contrast and detail discrimination when compared to any of the individual views and the method does not rely on prior knowledge of the system’s point spread function (PSF). Moreover, the results have shown improved performance with respect to previous PSF independent methods. With respect to its application to Delayed Enhancement Magnetic Resonance Imaging, the resulting fused volumes show a quantitative sharpness improvement and enable an easier and more complete interpretation of complex three-dimensional scar and heterogeneous tissue information in ischemic cardiomyopathy patients. In both applications, the results of this thesis are currently in use in the clinical and research centers with which the author collaborated during his work. An imple¬mentation of the fusion method has also been made freely available to the scientific community. Finally, an international patent application has been filed covering the visualization method developed for the Magnetic Resonance Imaging application.
Resumo:
Abstract interpreters rely on the existence of a nxpoint algorithm that calculates a least upper bound approximation of the semantics of the program. Usually, that algorithm is described in terms of the particular language in study and therefore it is not directly applicable to programs written in a different source language. In this paper we introduce a generic, block-based, and uniform representation of the program control flow graph and a language-independent nxpoint algorithm that can be applied to a variety of languages and, in particular, Java. Two major characteristics of our approach are accuracy (obtained through a topdown, context sensitive approach) and reasonable efficiency (achieved by means of memoization and dependency tracking techniques). We have also implemented the proposed framework and show some initial experimental results for standard benchmarks, which further support the feasibility of the solution adopted.
Resumo:
In recent decades, there has been an increasing interest in systems comprised of several autonomous mobile robots, and as a result, there has been a substantial amount of development in the eld of Articial Intelligence, especially in Robotics. There are several studies in the literature by some researchers from the scientic community that focus on the creation of intelligent machines and devices capable to imitate the functions and movements of living beings. Multi-Robot Systems (MRS) can often deal with tasks that are dicult, if not impossible, to be accomplished by a single robot. In the context of MRS, one of the main challenges is the need to control, coordinate and synchronize the operation of multiple robots to perform a specic task. This requires the development of new strategies and methods which allow us to obtain the desired system behavior in a formal and concise way. This PhD thesis aims to study the coordination of multi-robot systems, in particular, addresses the problem of the distribution of heterogeneous multi-tasks. The main interest in these systems is to understand how from simple rules inspired by the division of labor in social insects, a group of robots can perform tasks in an organized and coordinated way. We are mainly interested on truly distributed or decentralized solutions in which the robots themselves, autonomously and in an individual manner, select a particular task so that all tasks are optimally distributed. In general, to perform the multi-tasks distribution among a team of robots, they have to synchronize their actions and exchange information. Under this approach we can speak of multi-tasks selection instead of multi-tasks assignment, which means, that the agents or robots select the tasks instead of being assigned a task by a central controller. The key element in these algorithms is the estimation ix of the stimuli and the adaptive update of the thresholds. This means that each robot performs this estimate locally depending on the load or the number of pending tasks to be performed. In addition, it is very interesting the evaluation of the results in function in each approach, comparing the results obtained by the introducing noise in the number of pending loads, with the purpose of simulate the robot's error in estimating the real number of pending tasks. The main contribution of this thesis can be found in the approach based on self-organization and division of labor in social insects. An experimental scenario for the coordination problem among multiple robots, the robustness of the approaches and the generation of dynamic tasks have been presented and discussed. The particular issues studied are: Threshold models: It presents the experiments conducted to test the response threshold model with the objective to analyze the system performance index, for the problem of the distribution of heterogeneous multitasks in multi-robot systems; also has been introduced additive noise in the number of pending loads and has been generated dynamic tasks over time. Learning automata methods: It describes the experiments to test the learning automata-based probabilistic algorithms. The approach was tested to evaluate the system performance index with additive noise and with dynamic tasks generation for the same problem of the distribution of heterogeneous multi-tasks in multi-robot systems. Ant colony optimization: The goal of the experiments presented is to test the ant colony optimization-based deterministic algorithms, to achieve the distribution of heterogeneous multi-tasks in multi-robot systems. In the experiments performed, the system performance index is evaluated by introducing additive noise and dynamic tasks generation over time.
Resumo:
The problem of recurring concepts in data stream classification is a special case of concept drift where concepts may reappear. Although several existing methods are able to learn in the presence of concept drift, few consider contextual information when tracking recurring concepts. Nevertheless, in many real-world scenarios context information is available and can be exploited to improve existing approaches in the detection or even anticipation of recurring concepts. In this work, we propose the extension of existing approaches to deal with the problem of recurring concepts by reusing previously learned decision models in situations where concepts reappear. The different underlying concepts are identified using an existing drift detection method, based on the error-rate of the learning process. A method to associate context information and learned decision models is proposed to improve the adaptation to recurring concepts. The method also addresses the challenge of retrieving the most appropriate concept for a particular context. Finally, to deal with situations of memory scarcity, an intelligent strategy to discard models is proposed. The experiments conducted so far, using synthetic and real datasets, show promising results and make it possible to analyze the trade-off between the accuracy gains and the learned models storage cost.
Resumo:
This paper describes a recommender system for sport videos, transmitted over the Internet and/or broadcast, in the context of large-scale events, which has been tested for the Olympic Games. The recommender is based on audiovisual consumption and does not depend on the number of users, running only on the client side. This avoids the concurrence, computation and privacy problems of central server approaches in scenarios with a large number of users, such as the Olympic Games. The system has been designed to take advantage of the information available in the videos, which is used along with the implicit information of the user and the modeling of his/her audiovisual content consumption. The system is thus transparent to the user, who does not need to take any specific action. Another important characteristic is that the system can produce recommendations for both live and recorded events. Testing has showed advantages compared to previous systems, as will be shown in the results.