891 resultados para Construcción de conocimiento
Resumo:
En la primera parte del artículo el autor muestra que las fórmulas de volumen del prisma, pirámide y esfera no se justifican adecuadamente a los estudiantes. Esta afirmación la sustenta a partir de un análisis sucinto de lo que aparece en los textos que tradicionalmente dominan la enseñanza y de su experiencia como docente. En la segunda parte da a conocer una propuesta para construir las fórmulas del volumen de un prisma y una pirámide cualquiera; del área del círculo y la semiesfera y con base en esta última, obtener la del volumen de la esfera. Termina con la descripción de las ventajas de la estrategia.
Resumo:
Esta investigación se realizó con alumnos de Nivel Medio Superior (NMS) que habían cursado la asignatura de Matemáticas I y que tenían dificultades con la comprensión del concepto de número racional. El propósito fue poner en escena situaciones didácticas, para explorar sus efectos en la comprensión de este concepto. Para tener información precisa de cuál es el estado que guardaba este conocimiento en los alumnos, se hizo un diagnóstico, por lo que se diseñaron y validaron las situaciones que se utilizarían tanto en el diagnóstico como en la puesta en escena. En su diseño se consideraron los contenidos de aritmética de NMS, diferentes sistemas de representación y el modelo utilizado por Sierpinska sobre los actos de comprensión de conceptos matemáticos. Al comparar los resultados que se obtuvieron en el diagnóstico con los de la puesta en escena de las situaciones didácticas, se encontró que: el permitir que los alumnos conocieran diferentes formas de representar a los números racionales, el significado de cada una de ellas, así como convertir o traducir unas representaciones en otras a través de las situaciones didácticas, propició la construcción de este concepto y mejoraran su comprensión.
Resumo:
La intención de la ponencia está en la dirección de presentar un estudio de las prácticas que ejercen los actores en un diseño de aprendizaje puesto en escena en el aula de matemáticas. El diseño referido se centra, no en los contenidos matemáticos en sí o en las producciones de los participantes, sino en las prácticas sociales ejercidas por los participantes utilizando herramientas y situadas en un contexto social; en este caso las prácticas sociales de modelación del enfriamiento de un líquido. Reportamos la narración de la puesta en escena en el aula de matemáticas de un diseño de aprendizaje basado en prácticas sociales de modelación de fenómenos: “Lo exponencial: la ley de enfriamiento de Newton”. Aquí narramos como los participantes construyen lo exponencial como herramienta al intentar comprender y predecir lo que sucede al enfriarse un líquido.
Resumo:
Analizamos los registros de representación semiótica y las correspondientes funciones semióticas implícitos en la solución de dos problemas propuestos para la Educación Polimodal, que consideramos pueden ser utilizados en el proceso de enseñanza-aprendizaje de la noción resolución numérica de ecuaciones polinómicas, contemplada en los C.B.C. del mencionado nivel. Las representaciones juegan un rol fundamental en los procesos de construcción de conceptos, por lo que son importantes en la enseñanza, aprendizaje y comunicación del conocimiento matemático (Hitt, 1996). Con este análisis a priori, pretendemos ver cuáles de los registros de representación son de mayor peso para incorporar o darle sentido al concepto: Funciones polinómicas. Raíces de las correspondientes ecuaciones. Tratamos de responder a las preguntas: ¿Cuáles son los distintos registros de representación puestos en juego en la solución de cada problema?. ¿Cómo se suceden?. ¿Cómo aparecen y cuál es la necesidad de su conversión?. ¿Cómo se coordinan en la actividad conceptual? ¿En qué medida la presentación del tema desde una situación problemática es beneficiosa para incorporar y dar sentido a la determinación de las raíces de una ecuación polinómica?.
Resumo:
Uno de los desafíos esenciales de la enseñanza de las matemáticas consiste en la utilización de métodos y medios de enseñanza que propicien en los alumnos la formación de un conocimiento científico. Se asume como referente teórico los métodos del conocimiento científico de las ciencias pedagógicas, teniendo en cuenta que cuando el conocimiento que se quiere formar es científico, tiene que crear una actividad cognoscitiva nueva, lo que hace que la enseñanza y los medios de enseñanza que utilicemos sean diferentes, particularmente por el lenguaje que tiene la matemática, que ha de ser el lenguaje científico donde, además del habitual, se da el simbólico. El objetivo del trabajo es fundamentar la utilización de las calculadoras gráficas como un medio muy importante y actual para lograr formar en los alumnos un conocimiento científico de las matemáticas, y precisar que no basta con la enseñanza expositiva para que el estudiante se forme un conocimiento científico, pues la actitud científica hay que formarla, educarla en los estudiantes. Se caracterizan los niveles del conocimiento científico de las matemáticas, el empírico y el teórico y se precisa que ambos niveles se distinguen por los métodos de enseñanza y aprendizaje, donde el empírico emplea métodos que permiten describir los hechos, y es por eso que para este nivel se recomienda la visualización con la utilización de las calculadoras gráficas, y el nivel teórico utiliza métodos para distinguir las esencias, por ejemplo el hipotético-deductivo, el lógico histórico, la ascensión de lo abstracto a lo concreto pensado, etc. El trabajo aporta como resultado los principios para la utilización de las calculadoras gráficas en las clases de matemáticas en aras de formar un conocimiento científico en la enseñanza de esta materia.
Resumo:
El presente trabajo se ubica en la línea de educación estocástica en lo concerniente al conocimiento profesional del profesor; se pretende, explorar los conocimientos del profesor para la enseñanza de la probabilidad en la educación media colombiana. Para ello, se utiliza un análisis del discurso sobre las ideas expuestas por diversos autores en la literatura y el enfoque cualitativo de investigación mediante un estudio de casos. Se espera ampliar el panorama referente a los conocimientos necesarios para orientar el tema de probabilidad dentro del currículo de matemáticas en la educación de nivel pre universitario.
Resumo:
En este articulo se analizan los diferentes proyectos y propuestas curriculares relacionadas con el tratamiento del conocimiento estocástico, los contenidos que recogen y las orientaciones que sugieren para su tratamiento en el aula centradas la mayoría de ellas en un estudio frecuencialista del fenómeno aleatorio.
Resumo:
La construcción de la didáctica de las matemáticas como área de conocimiento científico trata de romper con la ilusión de transparencia que emerge del dominio de realidad configurado por los hechos didácticos. En este trabajo analizaremos la transparencia de los hechos didácticos a partir de diferentes investigaciones llevadas a cabo en esta área de conocimiento. En ellas se muestra cómo el análisis epistemológico de los objetos matemáticos de enseñanza es una condición necesaria para poder interpretar racionalmente los hechos y fenómenos didácticos.
Resumo:
Se presenta una construcción rigurosa de la función exponencial con base en aproximaciones decimales de números reales y utilizando herramientas relativamente simples de la teoría de sucesiones numéricas. Visto desde la óptica de un docente de secundaria, esta construcción es la formalización de la construcción intuitiva que siempre hemos enseñado a los muchachos. En la primera parte se repasa la completitud de R y sus consecuencias, así como algunas nociones básicas de sucesiones. La segunda parte prsenta paso a paso, la construcción de la función exponencial con exponente racional y en la tercera parte se extiende esta definición a exponentes reales. La presentación es completada con ejercicios que le ayuden al lector a profundizar un poco más en el tema, de acuerdo con los conocimientos previos. El trabajo esta dirigido a profesores y futuros profesores de secundaria. Se ha evitado en lo posible el uso de herramientas matemáticas sofisticadas, con el fin de hacer la lectura apropiada a la mayor audiencia posible.
Resumo:
Se analizan algunas comunidades halófilas de la cuenca del Duero, indicando sus peculiarides más notorias.
Resumo:
Se aportan nuevas localidades de táxones recolectados en el territorio diánico (comarca de La Marina Alta. Alicante) que constituyen primeras citas provinciales o tienen una distribución territorial poco conocida.
Resumo:
Sc ha estudiado al microscopio óptico el sedimento de once muestras de miel de diversas localidades del este de Sierra Morena. Se pone de manifiesto que, en este área, el néctar de flores es la principal fuenle de miel para Apis mellifera,siendo la mielada poco importante. Echium plantagineum, Lavandula stoechas y Eucalyptus camaldulensis son las principales fuentes de miel en este área, en tanto que Cistus ladanifer, C. albidus, Olea europaea y Quercus sp. lo son de polen.
Resumo:
Se estudian 40 poblaciones correspondientes a 21 táxones integrantes de la tribu Loteae y pertenecientes a los géneros Lotus. Dorycnium, Anthyllis y Tetragonolobus.
Resumo:
Se cita la presencia de 28 taxones de algas marinas interesantes procedentes del litoral levantino (Espafla, Mediterráneo occidental). Veinticuatro constituyen nuevas citas para dicho tramo del litoral mediterráneo peninsular. Destaca la presencia de Peyssonnella codana, primera cita para las costas mediterráneas españolas; Peyssonnelia magna, Metapeyssonnelia feldmannii, Ceramium fastigiatum var. flaccida, y Cystoseria sauvageauana var. polyoedematis.
Resumo:
Se comenta brevemente por su interés ecológico y corológico, la presencia de un ejemplar de Juniperus sabina en el norte de la provincia de Guadalajara.