942 resultados para Constrained optimization problems
Resumo:
A realização do presente trabalho teve como principais objectivos o desenvolvimento de espumas de poliuretano de um componente com propriedades de resistência à chama superiores (B1 & B2), aplicadas por pistola ou por adaptador/tubo e a optimização de uma espuma de poliuretano de um componente de inverno aplicada por pistola. Todo o trabalho desenvolvido está dividido em dois projectos distintos: i. O primeiro projecto consistiu em desenvolver espumas de um componente com propriedades de resistência à chama (classificadas como B1 e B2 de acordo com a norma alemã DIN 4102), aplicadas por pistola (GWB1 e GWB2) ou por adaptador/tubo (AWB), utilizando polióis poliésteres aromáticos modificados e aditivos retardantes de chama halogenados. Estas espumas deveriam apresentar também propriedades aceitáveis a baixas temperaturas. Após realizar várias formulações foi possível desenvolver uma espuma AWB2 com apenas 3,3% de poliol poliéster no pré-polímero e com propriedades equivalentes às da melhor espuma comercial mesmo a 5/-10 (temperatura da lata/cura da espuma em °C) e também com uma altura de chama de apenas 11 cm. A partir de duas formulações (AWB2) que passaram o Teste B2, foram obtidas também, uma espuma GWB2 e outra GWB1 com propriedades equivalentes às da melhor espuma da concorrência a -10/-10 e a 23/5, respectivamente, embora não tenham sido submetidas ao teste B2 e B1 após as modificações efectuadas. ii. O segundo projecto consistiu em optimizar uma espuma de poliuretano de um componente de inverno aplicada por pistola (GWB3). A espuma inicial tinha problemas de glass bubbles quando esta era dispensada a partir de uma lata cheia, sendo necessário ultrapassar este problema. Este problema foi resolvido diminuindo a razão de GPL/DME através do aumento da percentagem em volume de DME no pré-polímero para 14% no entanto, a estabilidade dimensional piorou um pouco. O reagente FCA 400 foi removido da formulação anterior (6925) numa tentativa de diminuir o custo da espuma, obtendo-se uma espuma aceitável a 23/23 e a 5/5, com uma redução de 4% no custo da produção e com uma redução de 5,5% no custo por litro de espuma dispensada, quando comparada com a sua antecessora. Por último, foi avaliada a influência da concentração de diferentes surfactantes na formulação 6925, verificando-se o melhoramento da estrutura celular da espuma para concentrções mais elevadas de surfactante, sendo este efeito mais notório a temperaturas mais baixas (5/5). Dos surfactantes estudados, o B 8871 mostrou o melhor desempenho a 5/5 com a concentração mais baixa, sendo portanto o melhor surfactante, enquanto o Struksilon 8003 demonstrou ser o menos adequado para esta formulação específica, apresentando piores resultados globais. Pode-se ainda acrescentar que os surfactantes L-5351, L-5352 e B 8526 também não são adequados para esta formulação uma vez que as espumas resultantes apresentam cell collapse, especialmente a 5/5. No caso dos surfactantes L-5351 e L-5352, esta propriedade piora com concentrações mais elevadas. Em cada projecto foram também efectuados testes de benchmark em determinadas espumas comerciais com o principal objectivo de comparar todos os resultados das espumas desenvolvidas, em ambos os projectos, com espumas da concorrência.
Resumo:
Num mundo em que as redes de telecomunicações estão em constante evolução e crescimento, o consumo energético destas também aumenta. Com a evolução tanto por parte das redes como dos seus equipamentos, o custo de implementação de uma rede tem-se reduzido até ao ponto em que o maior obstáculo para o crescimento das redes é já o seu custo de manutenção e funcionamento. Nas últimas décadas têm sido criados esforços para tornar as redes cada fez mais eficientes ao nível energético, reduzindo-se assim os seus custos operacionais, como também a redução dos problemas relacionados com as fontes de energia que alimentam estas redes. Neste sentido, este trabalho tem como objectivo principal o estudo do consumo energético de redes IP sobre WDM, designadamente o estudo de métodos de encaminhamento que sejam eficientes do ponto de vista energético. Neste trabalho formalizámos um modelo de optimização que foi avaliado usando diferentes topologias de rede. O resultado da análise mostrou que na maioria dos casos é possível obter uma redução do consumo na ordem dos 25%.
Resumo:
This paper is on the problem of short-term hydro scheduling, particularly concerning head-dependent reservoirs under competitive environment. We propose a new nonlinear optimization method to consider hydroelectric power generation as a function of water discharge and also of the head. Head-dependency is considered on short-term hydro scheduling in order to obtain more realistic and feasible results. The proposed method has been applied successfully to solve a case study based on one of the main Portuguese cascaded hydro systems, providing a higher profit at a negligible additional computation time in comparison with a linear optimization method that ignores head-dependency.
Resumo:
Thirty years ago, G.N. de Oliveira has proposed the following completion problems: Describe the possible characteristic polynomials of [C-ij], i,j is an element of {1, 2}, where C-1,C-1 and C-2,C-2 are square submatrices, when some of the blocks C-ij are fixed and the others vary. Several of these problems remain unsolved. This paper gives the solution, over the field of real numbers, of Oliveira's problem where the blocks C-1,C-1, C-2,C-2 are fixed and the others vary.
Resumo:
Topology optimization consists in finding the spatial distribution of a given total volume of material for the resulting structure to have some optimal property, for instance, maximization of structural stiffness or maximization of the fundamental eigenfrequency. In this paper a Genetic Algorithm (GA) employing a representation method based on trees is developed to generate initial feasible individuals that remain feasible upon crossover and mutation and as such do not require any repairing operator to ensure feasibility. Several application examples are studied involving the topology optimization of structures where the objective functions is the maximization of the stiffness and the maximization of the first and the second eigenfrequencies of a plate, all cases having a prescribed material volume constraint.
Resumo:
Based on our recent discovery of closed form formulae of efficient Mean Variance retentions in variable quota-share proportional reinsurance under group correlation, we analyzed the influence of different combination of correlation and safety loading levels on the efficient frontier, both in a single period stylized problem and in a multiperiod one.
Resumo:
In this paper, a stochastic programming approach is proposed for trading wind energy in a market environment under uncertainty. Uncertainty in the energy market prices is the main cause of high volatility of profits achieved by power producers. The volatile and intermittent nature of wind energy represents another source of uncertainty. Hence, each uncertain parameter is modeled by scenarios, where each scenario represents a plausible realization of the uncertain parameters with an associated occurrence probability. Also, an appropriate risk measurement is considered. The proposed approach is applied on a realistic case study, based on a wind farm in Portugal. Finally, conclusions are duly drawn. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents a methodology that aims to increase the probability of delivering power to any load point of the electrical distribution system by identifying new investments in distribution components. The methodology is based on statistical failure and repair data of the distribution power system components and it uses fuzzy-probabilistic modelling for system component outage parameters. Fuzzy membership functions of system component outage parameters are obtained by statistical records. A mixed integer non-linear optimization technique is developed to identify adequate investments in distribution networks components that allow increasing the availability level for any customer in the distribution system at minimum cost for the system operator. To illustrate the application of the proposed methodology, the paper includes a case study that considers a real distribution network.
Resumo:
n this paper we make an exhaustive study of the fourth order linear operator u((4)) + M u coupled with the clamped beam conditions u(0) = u(1) = u'(0) = u'(1) = 0. We obtain the exact values on the real parameter M for which this operator satisfies an anti-maximum principle. Such a property is equivalent to the fact that the related Green's function is nonnegative in [0, 1] x [0, 1]. When M < 0 we obtain the best estimate by means of the spectral theory and for M > 0 we attain the optimal value by studying the oscillation properties of the solutions of the homogeneous equation u((4)) + M u = 0. By using the method of lower and upper solutions we deduce the existence of solutions for nonlinear problems coupled with this boundary conditions. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This paper addresses the problem of energy resources management using modern metaheuristics approaches, namely Particle Swarm Optimization (PSO), New Particle Swarm Optimization (NPSO) and Evolutionary Particle Swarm Optimization (EPSO). The addressed problem in this research paper is intended for aggregators’ use operating in a smart grid context, dealing with Distributed Generation (DG), and gridable vehicles intelligently managed on a multi-period basis according to its users’ profiles and requirements. The aggregator can also purchase additional energy from external suppliers. The paper includes a case study considering a 30 kV distribution network with one substation, 180 buses and 90 load points. The distribution network in the case study considers intense penetration of DG, including 116 units from several technologies, and one external supplier. A scenario of 6000 EVs for the given network is simulated during 24 periods, corresponding to one day. The results of the application of the PSO approaches to this case study are discussed deep in the paper.
Resumo:
The operation of power systems in a Smart Grid (SG) context brings new opportunities to consumers as active players, in order to fully reach the SG advantages. In this context, concepts as smart homes or smart buildings are promising approaches to perform the optimization of the consumption, while reducing the electricity costs. This paper proposes an intelligent methodology to support the consumption optimization of an industrial consumer, which has a Combined Heat and Power (CHP) facility. A SCADA (Supervisory Control and Data Acquisition) system developed by the authors is used to support the implementation of the proposed methodology. An optimization algorithm implemented in the system in order to perform the determination of the optimal consumption and CHP levels in each instant, according to the Demand Response (DR) opportunities. The paper includes a case study with several scenarios of consumption and heat demand in the context of a DR event which specifies a maximum demand level for the consumer.
Resumo:
This paper proposes a particle swarm optimization (PSO) approach to support electricity producers for multiperiod optimal contract allocation. The producer risk preference is stated by a utility function (U) expressing the tradeoff between the expectation and variance of the return. Variance estimation and expected return are based on a forecasted scenario interval determined by a price range forecasting model developed by the authors. A certain confidence level is associated to each forecasted scenario interval. The proposed model makes use of contracts with physical (spot and forward) and financial (options) settlement. PSO performance was evaluated by comparing it with a genetic algorithm-based approach. This model can be used by producers in deregulated electricity markets but can easily be adapted to load serving entities and retailers. Moreover, it can easily be adapted to the use of other type of contracts.
Resumo:
Distribution systems are the first volunteers experiencing the benefits of smart grids. The smart grid concept impacts the internal legislation and standards in grid-connected and isolated distribution systems. Demand side management, the main feature of smart grids, acquires clear meaning in low voltage distribution systems. In these networks, various coordination procedures are required between domestic, commercial and industrial consumers, producers and the system operator. Obviously, the technical basis for bidirectional communication is the prerequisite of developing such a coordination procedure. The main coordination is required when the operator tries to dispatch the producers according to their own preferences without neglecting its inherent responsibility. Maintenance decisions are first determined by generating companies, and then the operator has to check and probably modify them for final approval. In this paper the generation scheduling from the viewpoint of a distribution system operator (DSO) is formulated. The traditional task of the DSO is securing network reliability and quality. The effectiveness of the proposed method is assessed by applying it to a 6-bus and 9-bus distribution system.
Resumo:
Natural gas industry has been confronted with big challenges: great growth in demand, investments on new GSUs – gas supply units, and efficient technical system management. The right number of GSUs, their best location on networks and the optimal allocation to loads is a decision problem that can be formulated as a combinatorial programming problem, with the objective of minimizing system expenses. Our emphasis is on the formulation, interpretation and development of a solution algorithm that will analyze the trade-off between infrastructure investment expenditure and operating system costs. The location model was applied to a 12 node natural gas network, and its effectiveness was tested in five different operating scenarios.
Resumo:
Short-term risk management is highly dependent on long-term contractual decisions previously established; risk aversion factor of the agent and short-term price forecast accuracy. Trying to give answers to that problem, this paper provides a different approach for short-term risk management on electricity markets. Based on long-term contractual decisions and making use of a price range forecast method developed by the authors, the short-term risk management tool presented here has as main concern to find the optimal spot market strategies that a producer should have for a specific day in function of his risk aversion factor, with the objective to maximize the profits and simultaneously to practice the hedge against price market volatility. Due to the complexity of the optimization problem, the authors make use of Particle Swarm Optimization (PSO) to find the optimal solution. Results from realistic data, namely from OMEL electricity market, are presented and discussed in detail.