885 resultados para Computer systems organization: general-emerging technologies


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Una detallada descripción de la dinámica de bajas energías del entrelazamiento multipartito es proporcionada para sistemas armónicos en una gran variedad de escenarios disipativos. Sin hacer ninguna aproximación central, esta descripción yace principalmente sobre un conjunto razonable de hipótesis acerca del entorno e interacción entorno-sistema, ambas consistente con un análisis lineal de la dinámica disipativa. En la primera parte se deriva un criterio de inseparabilidad capaz de detectar el entrelazamiento k-partito de una extensa clase de estados gausianos y no-gausianos en sistemas de variable continua. Este criterio se emplea para monitorizar la dinámica transitiva del entrelazamiento, mostrando que los estados no-gausianos pueden ser tan robustos frente a los efectos disipativos como los gausianos. Especial atención se dedicada a la dinámica estacionaria del entrelazamiento entre tres osciladores interaccionando con el mismo entorno o diferentes entornos a distintas temperaturas. Este estudio contribuye a dilucidar el papel de las correlaciones cuánticas en el comportamiento de la corrientes energéticas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stand-alone and networked surgical virtual reality based simulators have been proposed as means to train surgical skills with or without a supervisor nearby the student or trainee -- However, surgical skills teaching in medicine schools and hospitals is changing, requiring the development of new tools to focus on: (i) importance of mentors role, (ii) teamwork skills and (iii) remote training support -- For these reasons, a surgical simulator should not only allow the training involving a student and an instructor that are located remotely, but also the collaborative training of users adopting different medical roles during the training sesión -- Collaborative Networked Virtual Surgical Simulators (CNVSS) allow collaborative training of surgical procedures where remotely located users with different surgical roles can take part in the training session -- To provide successful training involving good collaborative performance, CNVSS should handle heterogeneity factors such as users’ machine capabilities and network conditions, among others -- Several systems for collaborative training of surgical procedures have been developed as research projects -- To the best of our knowledge none has focused on handling heterogeneity in CNVSS -- Handling heterogeneity in this type of collaborative sessions is important because not all remotely located users have homogeneous internet connections, nor the same interaction devices and displays, nor the same computational resources, among other factors -- Additionally, if heterogeneity is not handled properly, it will have an adverse impact on the performance of each user during the collaborative sesión -- In this document, the development of a context-aware architecture for collaborative networked virtual surgical simulators, in order to handle the heterogeneity involved in the collaboration session, is proposed -- To achieve this, the following main contributions are accomplished in this thesis: (i) Which and how infrastructure heterogeneity factors affect the collaboration of two users performing a virtual surgical procedure were determined and analyzed through a set of experiments involving users collaborating, (ii) a context-aware software architecture for a CNVSS was proposed and implemented -- The architecture handles heterogeneity factors affecting collaboration, applying various adaptation mechanisms and finally, (iii) A mechanism for handling heterogeneity factors involved in a CNVSS is described, implemented and validated in a set of testing scenarios

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract. The use of artificial immune systems in intrusion detection is an appealing concept for two reasons. Firstly, the human immune system provides the human body with a high level of protection from invading pathogens, in a robust, self-organised and distributed manner. Secondly, current techniques used in computer security are not able to cope with the dynamic and increasingly complex nature of computer systems and their security. It is hoped that biologically inspired approaches in this area, including the use of immune-based systems will be able to meet this challenge. Here we collate the algorithms used, the development of the systems and the outcome of their implementation. It provides an introduction and review of the key developments within this field, in addition to making suggestions for future research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Advances in FPGA technology and higher processing capabilities requirements have pushed to the emerge of All Programmable Systems-on-Chip, which incorporate a hard designed processing system and a programmable logic that enable the development of specialized computer systems for a wide range of practical applications, including data and signal processing, high performance computing, embedded systems, among many others. To give place to an infrastructure that is capable of using the benefits of such a reconfigurable system, the main goal of the thesis is to implement an infrastructure composed of hardware, software and network resources, that incorporates the necessary services for the operation, management and interface of peripherals, that coompose the basic building blocks for the execution of applications. The project will be developed using a chip from the Zynq-7000 All Programmable Systems-on-Chip family.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The growing demand for large-scale virtualization environments, such as the ones used in cloud computing, has led to a need for efficient management of computing resources. RAM memory is the one of the most required resources in these environments, and is usually the main factor limiting the number of virtual machines that can run on the physical host. Recently, hypervisors have brought mechanisms for transparent memory sharing between virtual machines in order to reduce the total demand for system memory. These mechanisms “merge” similar pages detected in multiple virtual machines into the same physical memory, using a copy-on-write mechanism in a manner that is transparent to the guest systems. The objective of this study is to present an overview of these mechanisms and also evaluate their performance and effectiveness. The results of two popular hypervisors (VMware and KVM) using different guest operating systems (Linux and Windows) and different workloads (synthetic and real) are presented herein. The results show significant performance differences between hypervisors according to the guest system workloads and execution time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Starting in December 1982 the University of Nottingham decided to phototypeset almost all of its examination papers `in house' using the troff, tbl and eqn programs running under UNIX. This tutorial lecture highlights the features of the three programs with particular reference to their strengths and weaknesses in a production environment. The following issues are particularly addressed: Standards -- all three software packages require the embedding of commands and the invocation of pre-written macros, rather than `what you see is what you get'. This can help to enforce standards, in the absence of traditional compositor skills. Hardware and Software -- the requirements are analysed for an inexpensive preview facility and a low-level interface to the phototypesetter. Mathematical and Technical papers -- the fine-tuning of eqn to impose a standard house style. Staff skills and training -- systems of this kind do not require the operators to have had previous experience of phototypesetting. Of much greater importance is willingness and flexibility in learning how to use computer systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of artificial immune systems in intrusion detection is an appealing concept for two reasons. Firstly, the human immune system provides the human body with a high level of protection from invading pathogens, in a robust, self-organised and distributed manner. Secondly, current techniques used in computer security are not able to cope with the dynamic and increasingly complex nature of computer systems and their security. It is hoped that biologically inspired approaches in this area, including the use of immune-based systems will be able to meet this challenge. Here we review the algorithms used, the development of the systems and the outcome of their implementation. We provide an introduction and analysis of the key developments within this field, in addition to making suggestions for future research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The major function of this model is to access the UCI Wisconsin Breast Cancer data-set[1] and classify the data items into two categories, which are normal and anomalous. This kind of classification can be referred as anomaly detection, which discriminates anomalous behaviour from normal behaviour in computer systems. One popular solution for anomaly detection is Artificial Immune Systems (AIS). AIS are adaptive systems inspired by theoretical immunology and observed immune functions, principles and models which are applied to problem solving. The Dendritic Cell Algorithm (DCA)[2] is an AIS algorithm that is developed specifically for anomaly detection. It has been successfully applied to intrusion detection in computer security. It is believed that agent-based modelling is an ideal approach for implementing AIS, as intelligent agents could be the perfect representations of immune entities in AIS. This model evaluates the feasibility of re-implementing the DCA in an agent-based simulation environment called AnyLogic, where the immune entities in the DCA are represented by intelligent agents. If this model can be successfully implemented, it makes it possible to implement more complicated and adaptive AIS models in the agent-based simulation environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Network Intrusion Detection Systems (NIDS) are computer systems which monitor a network with the aim of discerning malicious from benign activity on that network. While a wide range of approaches have met varying levels of success, most IDSs rely on having access to a database of known attack signatures which are written by security experts. Nowadays, in order to solve problems with false positive alerts, correlation algorithms are used to add additional structure to sequences of IDS alerts. However, such techniques are of no help in discovering novel attacks or variations of known attacks, something the human immune system (HIS) is capable of doing in its own specialised domain. This paper presents a novel immune algorithm for application to the IDS problem. The goal is to discover packets containing novel variations of attacks covered by an existing signature base.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human operators are unique in their decision making capability, judgment and nondeterminism. Their sense of judgment, unpredictable decision procedures, susceptibility to environmental elements can cause them to erroneously execute a given task description to operate a computer system. Usually, a computer system is protected against some erroneous human behaviors by having necessary safeguard mechanisms in place. But some erroneous human operator behaviors can lead to severe or even fatal consequences especially in safety critical systems. A generalized methodology that can allow modeling and analyzing the interactions between computer systems and human operators where the operators are allowed to deviate from their prescribed behaviors will provide a formal understanding of the robustness of a computer system against possible aberrant behaviors by its human operators. We provide several methodology for assisting in modeling and analyzing human behaviors exhibited while operating computer systems. Every human operator is usually given a specific recommended set of guidelines for operating a system. We first present process algebraic methodology for modeling and verifying recommended human task execution behavior. We present how one can perform runtime monitoring of a computer system being operated by a human operator for checking violation of temporal safety properties. We consider the concept of a protection envelope giving a wider class of behaviors than those strictly prescribed by a human task that can be tolerated by a system. We then provide a framework for determining whether a computer system can maintain its guarantees if the human operators operate within their protection envelopes. This framework also helps to determine the robustness of the computer system under weakening of the protection envelopes. In this regard, we present a tool called Tutela that assists in implementing the framework. We then examine the ability of a system to remain safe under broad classes of variations of the prescribed human task. We develop a framework for addressing two issues. The first issue is: given a human task specification and a protection envelope, will the protection envelope properties still hold under standard erroneous executions of that task by the human operators? In other words how robust is the protection envelope? The second issue is: in the absence of a protection envelope, can we approximate a protection envelope encompassing those standard erroneous human behaviors that can be safely endured by the system? We present an extension of Tutela that implements this framework. The two frameworks mentioned above use Concurrent Game Structures (CGS) as models for both computer systems and their human operators. However, there are some shortcomings of this formalism for our uses. We add incomplete information concepts in CGSs to achieve better modularity for the players. We introduce nondeterminism in both the transition system and strategies of players and in the modeling of human operators and computer systems. Nondeterministic action strategies for players in \emph{i}ncomplete information \emph{N}ondeterministic CGS (iNCGS) is a more precise formalism for modeling human behaviors exhibited while operating a computer system. We show how we can reason about a human behavior satisfying a guarantee by providing a semantics of Alternating Time Temporal Logic based on iNCGS player strategies. In a nutshell this dissertation provides formal methodology for modeling and analyzing system robustness against both expected and erroneous human operator behaviors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract. The use of artificial immune systems in intrusion detection is an appealing concept for two reasons. Firstly, the human immune system provides the human body with a high level of protection from invading pathogens, in a robust, self-organised and distributed manner. Secondly, current techniques used in computer security are not able to cope with the dynamic and increasingly complex nature of computer systems and their security. It is hoped that biologically inspired approaches in this area, including the use of immune-based systems will be able to meet this challenge. Here we collate the algorithms used, the development of the systems and the outcome of their implementation. It provides an introduction and review of the key developments within this field, in addition to making suggestions for future research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of artificial immune systems in intrusion detection is an appealing concept for two reasons. Firstly, the human immune system provides the human body with a high level of protection from invading pathogens, in a robust, self-organised and distributed manner. Secondly, current techniques used in computer security are not able to cope with the dynamic and increasingly complex nature of computer systems and their security. It is hoped that biologically inspired approaches in this area, including the use of immune-based systems will be able to meet this challenge. Here we review the algorithms used, the development of the systems and the outcome of their implementation. We provide an introduction and analysis of the key developments within this field, in addition to making suggestions for future research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This document presents GEmSysC, an unified cryptographic API for embedded systems. Software layers implementing this API can be built over existing libraries, allowing embedded software to access cryptographic functions in a consistent way that does not depend on the underlying library. The API complies to good practices for API design and good practices for embedded software development and took its inspiration from other cryptographic libraries and standards. The main inspiration for creating GEmSysC was the CMSIS-RTOS standard, which defines an unified API for embedded software in an implementation-independent way, but targets operating systems instead of cryptographic functions. GEmSysC is made of a generic core and attachable modules, one for each cryptographic algorithm. This document contains the specification of the core of GEmSysC and three of its modules: AES, RSA and SHA-256. GEmSysC was built targeting embedded systems, but this does not restrict its use only in such systems – after all, embedded systems are just very limited computing devices. As a proof of concept, two implementations of GEmSysC were made. One of them was built over wolfSSL, which is an open source library for embedded systems. The other was built over OpenSSL, which is open source and a de facto standard. Unlike wolfSSL, OpenSSL does not specifically target embedded systems. The implementation built over wolfSSL was evaluated in a Cortex- M3 processor with no operating system while the implementation built over OpenSSL was evaluated on a personal computer with Windows 10 operating system. This document displays test results showing GEmSysC to be simpler than other libraries in some aspects. These results have shown that both implementations incur in little overhead in computation time compared to the cryptographic libraries themselves. The overhead of the implementation has been measured for each cryptographic algorithm and is between around 0% and 0.17% for the implementation over wolfSSL and between 0.03% and 1.40% for the one over OpenSSL. This document also presents the memory costs for each implementation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La complejidad de los sistemas actuales de computación ha obligado a los diseñadores de herramientas CAD/CAE a acondicionar lenguajes de alto nivel, tipo C++, para la descripción y automatización de estructuras algorítmicas a sus correspondientes diseños a nivel físico. Los proyectos a realizar se encuadran dentro de una línea de trabajo consistente en estudiar la programación, funcionamiento de los lenguajes SystemC y SystemVerilog, sus herramientas asociadas y analizar cómo se adecuan a las restricciones temporales y físicas de los componentes (librerías, IP's, macro-celdas, etc) para su directa implementación. En una primera fase, y para este TFG, se estudiarán los componentes que conforman el framework elegido que es SystemC y su inclusión en herramientas de diseño arquitectural. Este conocimiento nos ayudará a entender el funcionamiento y capacidad de dicha herramienta y proceder a su correcto manejo. Analizaremos y estudiaremos unos de los lenguajes de alto nivel de los que hace uso dicha herramienta. Una vez entendido el contexto de aplicación, sus restricciones y sus elementos, diseñaremos una estructura hardware. Una vez que se tenga el diseño, se procederá a su implementación haciendo uso, si es necesario, de simuladores. El proyecto finalizará con una definición de un conjunto de pruebas con el fin de verificar y validar la usabilidad y viabilidad de nuestra estructura hardware propuesta.