907 resultados para Chromatography, Affinity
Resumo:
A simple and efficient method for the simultaneous gas chromatographic determination of ten organochlorine pesticides (alpha-HCH, beta-HCH, gamma-HCH, p,p'-DDT, o,p'-DDT, p,p'-DDD, p,p'-DDE, aldrin, endrin, and dieldrin) and six congeners of PCBs (PCB 28, 52, 118, 138, 153, and 180) in municipal solid waste compost is described. The procedure involves a solid-phase dispersion matrix using celite as dispersant sorbent, alumina as clean up sorbent and hexane-dichloromethane (7:3, v/v) mixture as eluting solvent. An additional purification step with copper was necessary to eliminate sulphur. Analysis of the sample was performed by GC-ECD. The method was validated with fortified samples at two concentration levels (0.025 and 0.05 mg kg(-1)). Average recovery ranged from 77 to 121% with relative standard deviation between 1 and 18%. The detection limits, which ranged from 0.003 to 0.01 mg kg-1, were lower than those established by the Baden-Wurttemberg directive (0.033 mg kg(-1)).
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A lectin-like protein from the seeds of Acacia farnesiana was isolated from the albumin fraction, characterized, and sequenced by tandem mass spectrometry. The albumin fraction was extracted with 0.5 M NaCl, and the lectin-like protein of A. farnesiana (AFAL) was purified by ion-exchange chromatography (Mono-Q) followed by chromatofocusing. AFAL agglutinated rabbit erythrocytes and did not agglutinate human ABO erythrocytes either native or treated with proteolytic enzymes. In sodium dodecyl sulfate gel electrophoresis under reducing and nonreducing conditions, AFAL separated into two bands with a subunit molecular mass of 35 and 50 kDa. The homogeneity of purified protein was confirmed by chromatofocusing with a pI=4.0+/-0.5. Molecular exclusion chromatography confirmed time-dependent oligomerization in AFAL, in accordance with mass spectrometry analysis, which confers an alteration in AFAL affinity for chitin. The protein sequence was obtained by a liquid chromatography quadrupole time-of-flight experiment and showed that AFAL has 68% and 63% sequence similarity with lectins of Phaseolus vulgaris and Dolichos biflorus, respectively.
Resumo:
Xylella fastidiosa is an important pathogen bacterium transmitted by xylem-feedings leafhoppers that colonizes the xylem of plants and causes diseases on several important crops including citrus variegated chlorosis (CVC) in orange and lime trees. Glutathione-S-transferases (GST) form a group of multifunctional isoenzymes that catalyzes both glutathione (GSH)-dependent conjugation and reduction reactions involved in the cellular detoxification of xenobiotic and endobiotic compounds. GSTs are the major detoxification enzymes found in the intracellular space and mainly in the cytosol from prokaryotes to mammals, and may be involved in the regulation of stress-activated signals by suppressing apoptosis signal-regulating kinase 1. In this study, we describe the cloning of the glutathione-S-transferase from X. fastidiosa into pET-28a(+) vector, its expression in Escherichia coli, purification and initial structural characterization. The purification of recombinant xfGST (rxfGST) to near homogeneity was achieved using affinity chromatography and size-exclusion chromatography (SEC). SEC demonstrated that rxfGST is a homodimer in solution. The secondary and tertiary structures of recombinant protein were analyzed by circular dichroism and fluorescence spectroscopy, respectively. The enzyme was assayed for activity and the results taken together indicated that rxfGST is a stable molecule, correctly folded, and highly active. Several members of the GST family have been extensively studied. However, xfGST is part of a less-studied subfamily which yet has not been structurally and biochemically characterized. In addition, these studies should provide a useful basis for future studies and biotechnological approaches of rxfGST. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The unique carbohydrate-binding property of lectins makes them invaluable tools in biomedical research. Here, we report the purification, partial primary structure, carbohydrate affinity characterization, crystallization, and preliminary X-ray diffraction analysis of a lactose-specific lectin from Cymbosema roseum seeds (CRLII). Isolation and purification of CRLII was performed by a single step using a Sepharose-4B-lactose affinity chromatography column. The carbohydrate affinity characterization was carried using assays for hemagglutination activity and inhibition. CRLII showed hemagglutinating activity toward rabbit erythrocytes. O-glycoproteins from mucine mucopolysaccharides showed the most potent inhibition capacity at a minimum concentration of 1.2 A mu g mL(-1). Protein sequencing by mass spectrometry was obtained by the digestion of CRLII with trypsin, Glu-C, and AspN. CRLII partial protein sequence exhibits 46% similarity with the ConA-like alpha chain precursor. Suitable protein crystals were obtained with the hanging-drop vapor-diffusion method with 8% ethylene glycol, 0.1 M Tris-HCl pH 8.5, and 11% PEG 8,000. The monoclinic crystals belong to space group P2(1) with unit cell parameters a = 49.4, b = 89.6, and c = 100.8 A....
Resumo:
Lysine-ketoglutaratc reductase catalyzes the first step of lysine catabolism in maize (Zea mays L.) endosperm. The enzyme condenses L-lysine and α-ketoglutarate into saccharopine using NADPH as cofactor. It is endosperm-specific and has a temporal pattern of activity, increasing with the onset of kernel development, reaching a peak 20 to 25 days after pollination, and thereafter decreasing as the kernel approaches maturity. The enzyme was extracted from the developing maize endosperm and partially purified by ammonium-sulfate precipitation, anion-exchange chromatography on DEAE-cellulose, and affinity chromatography on Blue-Sepharose CL-6B. The preparation obtained from affinity chromatography was enriched 275-fold and had a specific activity of 411 nanomoles per minute per milligram protein. The native and denaturated enzyme is a 140 kilodalton protein as determined by polyacrylamide gel electrophoresis. The enzyme showed specificity for its substrates and was not inhibited by either aminoethyl-cysteine or glutamate. Steady-state product-inhibition studies revealed that saccharopine was a noncompetitive inhibitor with respect to α-ketoglutarate and a competitive inhibitor with respect to lysine. This is suggestive of a rapid equilibriumordered binding mechanism with a binding order of lysine, α-ketoglutarate, NADPH. The enzyme activity was investigated in two maize inbred lines with homozygous normal and opaque-2 endosperms. The pattern of lysine-ketoglutarate reductase activity is coordinated with the rate of zein accumulation during endosperm development. A coordinated regulation of enzyme activity and zein accumulation was observed in the opaque-2 endosperm as the activity and zein levels were two to three times lower than in the normal endosperm. Enzyme extracted from L1038 normal and opaque-2 20 days after pollination was partially purified by DEAE-cellulose chromatography. Both genotypes showed a similar elution pattern with a single activity peak eluted at approximately 0.2 molar KCL. The molecular weight and physical properties of the normal and opaque-2 enzymes were essentially the same. We suggest that the Opaque-2 gene, which is a transactivator of the 22 kilodalton zein genes, may be involved in the regulation of the lysine-ketoglutarate reductase gene in maize endosperm. In addition, the decreased reductase activity caused by the opaque-2 mutation may explain, at least in part, the elevated concentration of lysine found in the opaque-2 endosperm.
Resumo:
The effect of nickel from soluble NiCl2 on Cu-Zn superoxide dismutase (SOD) activity, as well as on rate of nitro blue tetrazolium reduction, was studied in vitro since lipid peroxidation has been implicated in cell damage by nickel insoluble compounds, whose toxicity and carcinogenicity are well established. The physical and chemical nature of nickel compounds is one of the key determinations of its toxicity. Soluble nickel freely enter cells, but is just as readily excreted reducing the opportunity for production of lipid damage. Nickel from NiCl2 strongly activated SOD activity. In vitro addition of nickel chloride to a crude lung preparation altered the KM for SOD without changing the Vmax. Nickel chloride produced increased enzyme affinity to the substrate, because decreased (O2-) concentration that yields half-maximal velocity. The combination of nickel and SOD may contribute to stabilization of the particular conformation of SOD responsible for maximal catalytically activity.
Resumo:
A rapid and simple method was developed for quantitation of polar compounds in fats and oils using monostearin as internal standard. Starting from 50 mg of oil sample, polar compounds were obtained by solid-phase extraction (silica cartridges) and subsequently separated by high-performance size-exclusion chromatography into triglyceride polymers, triglyceride dimers, oxidized triglyceride monomers, diglycerides, internal standard and fatty acids. Quantitation of total polar compounds was achieved through the internal standard method and then amounts of each group of compounds could be calculated. A pool of polar compounds was used to check linearity, precision and accuracy of the method, as well as the solid-phase extraction recovery. The procedure was applied to samples with different content of polar compounds and good quantitative results were obtained, especially for samples of low alteration level.
Resumo:
Diarylpropenamine derivatives are a class of compounds which have been evaluated as potential drug candidates. Here a specific and reproducible HPLC method for the determination of cis- and trans-isomers of the unsubstituted derivative, 3-(4'-bromo-[1,1'-biphenyl]-4-yl)-3-(4-X-phenyl-N,N-dimethyl-2-propen-1-amine (I, where X=H) in feces is described. The analyte I and internal standard, nitro derivative (II, where X=NO2), were isolated from the basified biological matrix using a liquid-liquid extraction with ethyl acetate followed by a solid-phase procedure performed on a silica cartridge. The organic phase was evaporated to dryness, the residue was reconstituted in mobile phase and injected into the HPLC system. The analytes were eluted with ethyl acetate-hexane-triethylamine (59:40:1) in HPLC column (silica) and detected by UV spectrophotometry at 272 nm. Linearity, precision and accuracy data for feces standards after extraction were acceptable. The method has been applied to analyses of feces samples from rats dosed with I, in which it could be anticipated that fecal excretion is quantitatively the major route for I elimination. Copyright (C) 1999 Elsevier Science B.V.
Resumo:
A general procedure was developed for the simultaneous separation of flavonoids and naphthopyrones from the polar extracts of the capitula from Brazilian everlasting plants is described. The ethanolic extracts of several species from the Paepalanthus genus (Eriocaulaceae) were fractionated by droplet countercurrent chromatography followed by column chromatography on pvp and sephadex LH-20. The isolated compounds were identified by spectrometric analysis and comparison with literature data. This approach led to the isolation of 9-O-β-D-glucopyranosylpaepalantine (1), 9-O-β-D-glucopyranosyl (1→6)allopyranosylpaepalantine (2), along with the flavonoids 6-methoxykaempferol (3), 3-O-β-D-glucopyranosyl-6-methoxykaempferol (4), patuletin (5), 3-Oβ-D-rutinosylpatuletin (6), 7-O-β-D-glucopyranosylquercetagetin (7), 5,7,4'-trihydroxy-6,3'-dimethoxyflavone (8) and 5,7,4'-trihydroxy-6,3'-dimethoxyflavonol (9).